76 research outputs found
Effects of caffeine and/or nasal CPAP treatment on laryngeal chemoreflexes in preterm lambs
Current knowledge suggests that laryngeal chemoreflexes (LCR) are involved in the occurrence of certain neonatal apneas/bradycardias, especially in the preterm newborn. While caffeine and/or nasal continuous positive airway pressure (nCPAP) are the most frequent options used for treating apneas in preterm newborns, their effects on LCR-related apneas/bradycardias are virtually unknown. The aim of the present study was to test the hypothesis that caffeine and/or nCPAP decreases LCR-related cardiorespiratory inhibition in a preterm ovine model. Seven preterm lambs were born vaginally on gestational day 133 (normal gestation: 147 days) after intramuscular injections of betamethasone and mifepristone. Five days after birth, a chronic surgical instrumentation was performed to record states of alertness, electrocardiogram, systemic arterial pressure, and electromyographic activity of a laryngeal constrictor muscle, as well as to insert a transcutaneous supraglottal catheter. LCR were induced in quiet sleep under four conditions: 1) control (without caffeine or nCPAP); 2) nCPAP (5 cmH2O, without caffeine); 3) caffeine (10 mg/kg infused intravenously for 30 min, without nCPAP); and 4) nCPAP + caffeine. Our results showed that nCPAP consistently blunted LCR-related cardiorespiratory inhibition vs. control condition, contrary to caffeine whose overall effect was nonsignificant. In addition, nCPAP condition was characterized by a more consistent and rapid arousal after HCl injection. No significant differences were observed between all tested conditions with regard to swallowing and cough. It is concluded that nCPAP should be further assessed for its usefulness in treating neonatal apneas linked to LCR
Diversity and Relatedness Enhance Survival in Colour Polymorphic Grasshoppers
Evolutionary theory predicts that different resource utilization and behaviour by alternative phenotypes may reduce competition and enhance productivity and individual performance in polymorphic, as compared with monomorphic, groups of individuals. However, firm evidence that members of more heterogeneous groups benefit from enhanced survival has been scarce or lacking. Furthermore, benefits associated with phenotypic diversity may be counterbalanced by costs mediated by reduced relatedness, since closely related individuals typically are more similar. Pygmy grasshoppers (Tetrix subulata) are characterized by extensive polymorphism in colour pattern, morphology, behaviour and physiology. We studied experimental groups founded by different numbers of mothers and found that survival was higher in low than in high density, that survival peaked at intermediate colour morph diversity in high density, and that survival was independent of diversity in low density where competition was less intense. We further demonstrate that survival was enhanced by relatedness, as expected if antagonistic and competitive interactions are discriminately directed towards non-siblings. We therefore also performed behavioural observations and staged encounters which confirmed that individuals recognized and responded differently to siblings than to non-siblings. We conclude that negative effects associated with competition are less manifest in diverse groups, that there is conflicting selection for and against genetic diversity occurring simultaneously, and that diversity and relatedness may facilitate the productivity and ecological success of groups of interacting individuals
A densification mechanism to model the mechanical effect of methane hydrates in sandy sediments
Recent pore‐scale observations and geomechanical investigations suggest the lack of true cohesion in methane hydrate‐bearing sediments (MHBSs) and propose that their mechanical behavior is governed by kinematic constrictions at pore‐scale. This paper presents a constitutive model for MHBS, which does not rely on physical bonding between hydrate crystals and sediment grains but on the densification effect that pore invasion with hydrate has on the sediment mechanical properties. The Hydrate‐CASM extends the critical state model Clay and Sand Model (CASM) by implementing the subloading surface model and introducing the densification mechanism. The model suggests that the decrease of the sediment available void volume during hydrate formation stiffens its structure and has a similar mechanical effect as the increase of sediment density. In particular, the model attributes stress‐strain changes observed in MHBS to the variations in sediment available void volume with hydrate saturation and its consequent effect on isotropic yield stress and swelling line slope. The model performance is examined against published experimental data from drained triaxial tests performed at different confining stress and with distinct hydrate saturation and morphology. Overall, the simulations capture the influence of hydrate saturation in both the magnitude and trend of the stiffness, shear strength, and volumetric response of synthetic MHBS. The results are validated against those obtained from previous mechanical models for MHBS that examine the same experimental data. The Hydrate‐CASM performs similarly to previous models, but its formulation only requires one hydrate‐related empirical parameter to express changes in the sediment elastic stiffness with hydrate saturation
Application of Inelastic Neutron Scattering to the Methanol-to-Gasoline Reaction Over a ZSM-5 Catalyst
Inelastic neutron scattering (INS) is used to investigate a ZSM-5 catalyst that has been exposed to methanol vapour at elevated temperature. In-line mass spectrometric analysis of the catalyst exit stream confirms methanol-to-gasoline chemistry, whilst ex situ INS measurements detect hydrocarbon species formed in/on the catalyst during methanol conversion. These preliminary studies demonstrate the capability of INS to complement infrared spectroscopic characterisation of the hydrocarbon pool present in/on ZSM-5 during the MTG reaction
Humans and Insects Decide in Similar Ways
Behavioral ecologists assume that animals use a motivational mechanism for decisions such as action selection and time allocation, allowing the maximization of their fitness. They consider both the proximate and ultimate causes of behavior in order to understand this type of decision-making in animals. Experimental psychologists and neuroeconomists also study how agents make decisions but they consider the proximate causes of the behavior. In the case of patch-leaving, motivation-based decision-making remains simple speculation. In contrast to other animals, human beings can assess and evaluate their own motivation by an introspection process. It is then possible to study the declared motivation of humans during decision-making and discuss the mechanism used as well as its evolutionary significance. In this study, we combine both the proximate and ultimate causes of behavior for a better understanding of the human decision-making process. We show for the first time ever that human subjects use a motivational mechanism similar to small insects such as parasitoids [1] and bumblebees [2] to decide when to leave a patch. This result is relevant for behavioral ecologists as it supports the biological realism of this mechanism. Humans seem to use a motivational mechanism of decision making known to be adaptive to a heterogeneously distributed resource. As hypothesized by Hutchinson et al. [3] and Wilke and Todd [4], our results are consistent with the evolutionary shaping of decision making because hominoids were hunters and gatherers on food patches for more than two million years. We discuss the plausibility of a neural basis for the motivation mechanism highlighted here, bridging the gap between behavioral ecology and neuroeconomy. Thus, both the motivational mechanism observed here and the neuroeconomy findings are most likely adaptations that were selected for during ancestral times
Packages of Care for Attention-Deficit Hyperactivity Disorder in Low- and Middle-Income Countries
In the sixth in a series of six articles on packages of care for mental disorders in low- and middle-income countries, Alan Flisher and colleagues discuss the treatment of attention-deficit hyperactivity disorder
Successful Cognitive Aging in Rats: A Role for mGluR5 Glutamate Receptors, Homer 1 Proteins and Downstream Signaling Pathways
Normal aging is associated with impairments in cognition, especially learning and memory. However, major individual differences are known to exist. Using the classical Morris Water Maze (MWM) task, we discriminated a population of 24-months old Long Evans aged rats in two groups - memory-impaired (AI) and memory-unimpaired (AU) in comparison with 6-months old adult animals. AI rats presented deficits in learning, reverse memory and retention. At the molecular level, an increase in metabotropic glutamate receptors 5 (mGluR5) was observed in post-synaptic densities (PSD) in the hippocampus of AU rats after training. Scaffolding Homer 1b/c proteins binding to group 1 mGluR facilitate coupling with its signaling effectors while Homer 1a reduces it. Both Homer 1a and 1b/c levels were up-regulated in the hippocampus PSD of AU animals following MWM task. Using immunohistochemistry we further demonstrated that mGluR5 as well as Homer 1b/c stainings were enhanced in the CA1 hippocampus sub-field of AU animals. In fact mGluR5 and Homer 1 isoforms were more abundant and co-localized in the hippocampal dendrites in AU rats. However, the ratio of Homer 1a/Homer 1b/c bound to mGluR5 in the PSD was four times lower for AU animals compared to AI rats. Consequently, AU animals presented higher PKCγ, ERK, p70S6K, mTOR and CREB activation. Finally the expression of immediate early gene Arc/Arg3.1 was shown to be higher in AU rats in accordance with its role in spatial memory consolidation. On the basis of these results, a model of successful cognitive aging with a critical role for mGluR5, Homer 1 proteins and downstream signalling pathways is proposed here
- …