106 research outputs found

    Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations

    Get PDF
    Micronutrient malnutrition afflicts over three billion peopleworldwide and the numbers are continuously increasing. Developing genetically micronutrientenriched cereals, which are the predominant source of human dietary, is essential to alleviate malnutrition worldwide. Wheat chromosome 6B derived from wild emmerwheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell] was previously reported to be a source for high Zn concentration in the grain. In the present study, recombinant chromosome substitution lines (RSLs), previously constructed for genetic and physical maps of Gpc-B1 (a 250-kb locus affecting grain protein concentration), were used to identify the effects of the Gpc-B1 locus on grain micronutrient concentrations. RSLs carrying the Gpc-B1 allele of T. dicoccoides accumulated on average 12% higher concentration of Zn, 18% higher concentration of Fe, 29% higher concentration of Mn and 38% higher concentration of protein in the grain as compared with RSLs carrying the allele from cultivated wheat (Triticum durum). Furthermore, the high grain Zn, Fe and Mn concentrations were consistently expressed in five different environments with an absence of genotype by environment interaction. The results obtained in the present study also confirmed the previously reported effect of the wild-type allele of Gpc-B1 on earlier senescence of flag leaves. We suggest that the Gpc-B1 locus is involved in more efficient remobilization of protein, zinc, iron and manganese from leaves to the grains, in addition to its effect on earlier senescence of the green tissues

    Epidemiology and seasonality of respiratory viral infections in hospitalized children in Kuala Lumpur, Malaysia: a retrospective study of 27 years

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viral respiratory tract infections (RTI) are relatively understudied in Southeast Asian tropical countries. In temperate countries, seasonal activity of respiratory viruses has been reported, particularly in association with temperature, while inconsistent correlation of respiratory viral activity with humidity and rain is found in tropical countries. A retrospective study was performed from 1982-2008 to investigate the viral etiology of children (≤ 5 years old) admitted with RTI in a tertiary hospital in Kuala Lumpur, Malaysia.</p> <p>Methods</p> <p>A total of 10269 respiratory samples from all children ≤ 5 years old received at the hospital's diagnostic virology laboratory between 1982-2008 were included in the study. Immunofluorescence staining (for respiratory syncytial virus (RSV), influenza A and B, parainfluenza types 1-3, and adenovirus) and virus isolation were performed. The yearly hospitalization rates and annual patterns of laboratory-confirmed viral RTIs were determined. Univariate ANOVA was used to analyse the demographic parameters of cases. Multiple regression and Spearman's rank correlation were used to analyse the correlation between RSV cases and meteorological parameters.</p> <p>Results</p> <p>A total of 2708 cases were laboratory-confirmed using immunofluorescence assays and viral cultures, with the most commonly detected being RSV (1913, 70.6%), parainfluenza viruses (357, 13.2%), influenza viruses (297, 11.0%), and adenovirus (141, 5.2%). Children infected with RSV were significantly younger, and children infected with influenza viruses were significantly older. The four main viruses caused disease throughout the year, with a seasonal peak observed for RSV in September-December. Monthly RSV cases were directly correlated with rain days, and inversely correlated with relative humidity and temperature.</p> <p>Conclusion</p> <p>Viral RTIs, particularly due to RSV, are commonly detected in respiratory samples from hospitalized children in Kuala Lumpur, Malaysia. As in temperate countries, RSV infection in tropical Malaysia also caused seasonal yearly epidemics, and this has implications for prophylaxis and vaccination programmes.</p

    Acromioclavicular joint dislocation: a comparative biomechanical study of the palmaris-longus tendon graft reconstruction with other augmentative methods in cadaveric models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acromioclavicular injuries are common in sports medicine. Surgical intervention is generally advocated for chronic instability of Rockwood grade III and more severe injuries. Various methods of coracoclavicular ligament reconstruction and augmentation have been described. The objective of this study is to compare the biomechanical properties of a novel palmaris-longus tendon reconstruction with those of the native AC+CC ligaments, the modified Weaver-Dunn reconstruction, the ACJ capsuloligamentous complex repair, screw and clavicle hook plate augmentation.</p> <p>Hypothesis</p> <p>There is no difference, biomechanically, amongst the various reconstruction and augmentative methods.</p> <p>Study Design</p> <p>Controlled laboratory cadaveric study.</p> <p>Methods</p> <p>54 cadaveric native (acromioclavicular and coracoclavicular) ligaments were tested using the Instron machine. Superior loading was performed in the 6 groups: 1) in the intact states, 2) after modified Weaver-Dunn reconstruction (WD), 3) after modified Weaver-Dunn reconstruction with acromioclavicular joint capsuloligamentous repair (WD.ACJ), 4) after modified Weaver-Dunn reconstruction with clavicular hook plate augmentation (WD.CP) or 5) after modified Weaver-Dunn reconstruction with coracoclavicular screw augmentation (WD.BS) and 6) after modified Weaver-Dunn reconstruction with mersilene tape-palmaris-longus tendon graft reconstruction (WD. PLmt). Posterior-anterior (horizontal) loading was similarly performed in all groups, except groups 4 and 5. The respective failure loads, stiffnesses, displacements at failure and modes of failure were recorded. Data analysis was carried out using a one-way ANOVA, with Student's unpaired t-test for unpaired data (S-PLUS statistical package 2005).</p> <p>Results</p> <p>Native ligaments were the strongest and stiffest when compared to other modes of reconstruction and augmentation except coracoclavicular screw, in both posterior-anterior and superior directions (p < 0.005).</p> <p>WD.ACJ provided additional posterior-anterior (P = 0. 039) but not superior (p = 0.250) stability when compared to WD alone.</p> <p>WD+PLmt, in loads and stiffness at failure superiorly, was similar to WD+CP (p = 0.066). WD+PLmt, in loads and stiffness at failure postero-anteriorly, was similar to WD+ACJ (p = 0.084).</p> <p>Superiorly, WD+CP had similar strength as WD+BS (p = 0.057), but it was less stiff (p < 0.005).</p> <p>Conclusions and Clinical Relevance</p> <p>Modified Weaver-Dunn procedure must always be supplemented with acromioclavicular capsuloligamentous repair to increase posterior-anterior stability. Palmaris-Longus tendon graft provides both additional superior and posterior-anterior stability when used for acromioclavicular capsuloligamentous reconstruction. It is a good alternative to clavicle hook plate in acromioclavicular dislocation.</p

    Molecular Mechanisms of Fiber Differential Development between G. barbadense and G. hirsutum Revealed by Genetical Genomics

    Get PDF
    Cotton fiber qualities including length, strength and fineness are known to be controlled by genes affecting cell elongation and secondary cell wall (SCW) biosynthesis, but the molecular mechanisms that govern development of fiber traits are largely unknown. Here, we evaluated an interspecific backcrossed population from G. barbadense cv. Hai7124 and G. hirsutum acc. TM-1 for fiber characteristics in four-year environments under field conditions, and detected 12 quantitative trait loci (QTL) and QTL-by-environment interactions by multi-QTL joint analysis. Further analysis of fiber growth and gene expression between TM-1 and Hai7124 showed greater differences at 10 and 25 days post-anthesis (DPA). In this two period important for fiber performances, we integrated genome-wide expression profiling with linkage analysis using the same genetic materials and identified in total 916 expression QTL (eQTL) significantly (P<0.05) affecting the expression of 394 differential genes. Many positional cis-/trans-acting eQTL and eQTL hotspots were detected across the genome. By comparative mapping of eQTL and fiber QTL, a dataset of candidate genes affecting fiber qualities was generated. Real-time quantitative RT-PCR (qRT-PCR) analysis confirmed the major differential genes regulating fiber cell elongation or SCW synthesis. These data collectively support molecular mechanism for G. hirsutum and G. barbadense through differential gene regulation causing difference of fiber qualities. The down-regulated expression of abscisic acid (ABA) and ethylene signaling pathway genes and high-level and long-term expression of positive regulators including auxin and cell wall enzyme genes for fiber cell elongation at the fiber developmental transition stage may account for superior fiber qualities

    Transcriptome characterization of the South African abalone Haliotis midae using sequencing-by-synthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Worldwide, the genus <it>Haliotis </it>is represented by 56 extant species and several of these are commercially cultured. Among the six abalone species found in South Africa, <it>Haliotis midae </it>is the only aquacultured species. Despite its economic importance, genomic sequence resources for <it>H. midae</it>, and for abalone in general, are still scarce. Next generation sequencing technologies provide a fast and efficient tool to generate large sequence collections that can be used to characterize the transcriptome and identify expressed genes associated with economically important traits like growth and disease resistance.</p> <p>Results</p> <p>More than 25 million short reads generated by the Illumina Genome Analyzer were <it>de novo </it>assembled in 22,761 contigs with an average size of 260 bp. With a stringent <it>E</it>-value threshold of 10<sup>-10</sup>, 3,841 contigs (16.8%) had a BLAST homologous match against the Genbank non-redundant (NR) protein database. Most of these sequences were annotated using the gene ontology (GO) and eukaryotic orthologous groups of proteins (KOG) databases and assigned to various functional categories. According to annotation results, many gene families involved in immune response were identified. Thousands of simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) were detected. Setting stringent parameters to ensure a high probability of amplification, 420 primer pairs in 181 contigs containing SSR loci were designed.</p> <p>Conclusion</p> <p>This data represents the most comprehensive genomic resource for the South African abalone <it>H. midae </it>to date. The amount of assembled sequences demonstrated the utility of the Illumina sequencing technology in the transcriptome characterization of a non-model species. It allowed the development of several markers and the identification of promising candidate genes for future studies on population and functional genomics in <it>H. midae </it>and in other abalone species.</p

    Polyploidization Altered Gene Functions in Cotton (Gossypium spp.)

    Get PDF
    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor, provides more transcription factors that regulate the expression of the fiber genes in the At subgenome. This hypothesis would explain previously published mapping results. At the same time, this integrated map of fiber development genes would provide a framework to clone individual full-length fiber genes, to elucidate the physiological mechanisms of the fiber differentiation, elongation, and maturation, and to systematically study the functional network of these genes that interact during the process of fiber development in the tetraploid cottons

    In praise of arrays

    Get PDF
    Microarray technologies have both fascinated and frustrated the transplant community since their introduction roughly a decade ago. Fascination arose from the possibility offered by the technology to gain a profound insight into the cellular response to immunogenic injury and the potential that this genomic signature would be indicative of the biological mechanism by which that stress was induced. Frustrations have arisen primarily from technical factors such as data variance, the requirement for the application of advanced statistical and mathematical analyses, and difficulties associated with actually recognizing signature gene-expression patterns and discerning mechanisms. To aid the understanding of this powerful tool, its versatility, and how it is dramatically changing the molecular approach to biomedical and clinical research, this teaching review describes the technology and its applications, as well as the limitations and evolution of microarrays, in the field of organ transplantation. Finally, it calls upon the attention of the transplant community to integrate into multidisciplinary teams, to take advantage of this technology and its expanding applications in unraveling the complex injury circuits that currently limit transplant survival
    corecore