8 research outputs found

    Development and validation of stability indicating method for determination of sertraline following ICH guidlines and its determination in pharmaceuticals and biological fluids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sertraline is a well known antidepressant drug which belongs to a class called selective serotonin reuptake inhibitor. Most published methods do not enable studying the stability of this drug in different stress conditions.</p> <p>Results</p> <p>Two new methods were developed for the determination of sertraline (SER). Both methods are based on coupling with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in borate buffer of pH 7.8 and measuring the reaction product spectrophotometrically at 395 nm (Method I) or spectrofluorimetrically at 530 nm upon excitation at 480 nm (Method II). The response-concentration plots were rectilinear over the range 2-24 ÎĽg/mL and 0.25-5 ÎĽg/mL for methods I and II respectively with LOD of 0.18 ÎĽg/mL and 0.07 ÎĽg/mL, and LOQ of 0.56 ÎĽg/mL and 0.21 ÎĽg/mL for methods I and II, respectively.</p> <p>Conclusion</p> <p>Both methods were applied to the analysis of commercial tablets and the results were in good agreement with those obtained using a reference method. The fluorimetric method was further applied to the in vivo determination of SER in human plasma. A proposal of the reaction pathway was presented. The spectrophotometric method was extended to stability study of SER. The drug was exposed to alkaline, acidic, oxidative and photolytic degradation according to ICH guidelines. Moreover, the method was utilized to investigate the kinetics of oxidative degradation of the drug. The apparent first order rate constant and t<sub>1/2 </sub>of the degradation reaction were determined.</p

    The Debate About the Consequences of Job Displacement

    Get PDF

    ADORA2A Gene Variation, Caffeine, and Emotional Processing: A Multi-level Interaction on Startle Reflex

    No full text
    There is converging evidence for genetic, biochemical, and neuropsychological factors to increase the risk for anxiety and anxiety disorders. The pathogenesis of anxiety disorders is assumed to be influenced by a complex interaction of these individual risk factors on several levels, affecting intermediate phenotypes of anxiety such as the startle reflex. Thus, in the present double-blind, placebo-controlled study we attempted to paradigmatically investigate a multi-level pathogenetic model of anxiety by testing the effect of 300 mg caffeine citrate as an antagonist at the adenosine A2A receptor vs placebo on the emotion-potentiated (unpleasant, neutral, and pleasant International Affective Picture System pictures) startle reflex in 110 healthy individuals (male=56, female=54) stratified for the adenosine A2A receptor (ADORA2A) 1976T>C polymorphism (rs5751876). In addition to the expected main effect of picture category (highest startle amplitude for unpleasant, lowest for pleasant pictures) groups across all ADORA2A 1976T>C genotype and intervention (caffeine vs placebo) groups, an interaction effect of genotype, intervention, and picture category was discerned: In ADORA2A 1976TT risk genotype carriers, highest startle magnitudes were observed after caffeine administration in response to unpleasant pictures, with this effect arising particularly from the female subgroup. Our data point to a complex, multi-level, and potentially gender-specific pathogenetic model of anxiety, with genetic and biochemical factors interactively increasing the risk of maladaptive emotional processing and thereby possibly also anxiety disorders. The present findings may eventually aid in improving primary and secondary prevention by sharpening the risk profiles of anxiety-prone individuals

    Cytology, Cytogenetics and Plant Breeding

    No full text
    corecore