80 research outputs found

    Fluorinated phenmetrazine β€œlegal highs” act as substrates for high-affinity monoamine transporters of the SLC6 family

    Get PDF
    A variety of new psychoactive substances (NPS) are appearing in recreational drug markets worldwide. NPS are compounds that target various receptors and transporters in the central nervous system to achieve their psychoactive effects. Chemical modifications of existing drugs can generate NPS that are not controlled by current legislation, thereby providing legal alternatives to controlled substances such as cocaine or amphetamine. Recently, 3-fluorophenmetrazine (3-FPM), a derivative of the anorectic compound phenmetrazine, appeared on the recreational drug market and adverse clinical effects of the drug have been reported. Phenmetrazine is known to elevate extracellular monoamine concentrations by an amphetamine-like mechanism. Here we tested 3-FPM and its positional isomers, 2-FPM and 4-FPM, for their abilities to interact with plasma membrane monoamine transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). We found that 2-, 3- and 4-FPM inhibit uptake mediated by DAT and NET in HEK293 cells with potencies comparable to cocaine (IC50 values 50 Β΅M). Experiments directed at identifying transporter-mediated reverse transport revealed that FPM isomers induce efflux via DAT, NET and SERT in HEK293 cells, and this effect is augmented by the Na+/H+ ionophore monensin. Each FPM evoked concentration-dependent release of monoamines from rat brain synaptosomes. Hence, this study reports for the first time the mode of action for 2-, 3- and 4-FPM and identifies these NPS as monoamine releasers with marked potency at catecholamine transporters implicated in abuse and addiction

    Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management

    Get PDF
    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems

    Kestenbaum procedure with posterior fixation suture for anomalous head posture in infantile nystagmus

    Get PDF
    The purpose of this study was to report the effect of combining the Kestenbaum procedure with posterior fixation suture for infantile horizontal nystagmus with anomalous head posture (AHP) in children. Nine consecutive patients who underwent combined Kestenbaum procedure plus posterior fixation suture to the recessed muscles at the same time were retrospectively studied. All patients were orthotropic before surgery and were followed for at least 6Β months. Pre- and postoperative AHP and binocular corrected visual acuity (BCVA), and ocular alignment were assessed. Mean age at surgery was 4.8 ± 1.5Β years. The average follow-up was 29.7Β months. The average head turn preoperatively was 27.4Β° and postoperatively 7.2Β°. The average net change in AHP was 24.8Β° (P = 0.008). Seven of 9 patients (78%) achieved a residual head turn of 10Β° or less. The average Log Mar BCVA was 0.33 preoperatively and 0.31 postoperatively (P = 0.68). Only 1 patient needed additional surgery for residual horizontal AHP. No patient developed strabismus. Combined Kestenbaum procedure with posterior fixation suture was an effective and stable procedure in reducing AHP of the range of 20Β° to 35Β° in children with infantile nystagmus

    Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS), inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3) cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL)-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes.</p> <p>Results</p> <p>Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 ΞΌg/ml as determined by measurements of [<sup>3</sup>H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G<sub>2</sub>/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin.</p> <p>Conclusion</p> <p>Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth.</p

    Anti-Hu antibodies activate enteric and sensory neurons.

    Get PDF
    IgG of type 1 anti-neuronal nuclear antibody (ANNA-1, anti-Hu) specificity is a serological marker of paraneoplastic neurological autoimmunity (including enteric/autonomic) usually related to small-cell lung carcinoma. We show here that IgG isolated from such sera and also affinity-purified anti-HuD label enteric neurons and cause an immediate spike discharge in enteric and visceral sensory neurons. Both labelling and activation of enteric neurons was prevented by preincubation with the HuD antigen. Activation of enteric neurons was inhibited by the nicotinic receptor antagonists hexamethonium and dihydro-Ξ²-erythroidine and reduced by the P2X antagonist pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid (PPADS) but not by the 5-HT3 antagonist tropisetron or the N-type Ca-channel blocker Ο‰-Conotoxin GVIA. Ca(++) imaging experiments confirmed activation of enteric neurons but not enteric glia. These findings demonstrate a direct excitatory action of ANNA-1, in particular anti-HuD, on visceral sensory and enteric neurons, which involves nicotinic and P2X receptors. The results provide evidence for a novel link between nerve activation and symptom generation in patients with antibody-mediated gut dysfunction

    Genome-Wide Integration on Transcription Factors, Histone Acetylation and Gene Expression Reveals Genes Co-Regulated by Histone Modification Patterns

    Get PDF
    N-terminal tails of H2A, H2B, H3 and H4 histone families are subjected to posttranslational modifications that take part in transcriptional regulation mechanisms, such as transcription factor binding and gene expression. Regulation mechanisms under control of histone modification are important but remain largely unclear, despite of emerging datasets for comprehensive analysis of histone modification. In this paper, we focus on what we call genetic harmonious units (GHUs), which are co-occurring patterns among transcription factor binding, gene expression and histone modification. We present the first genome-wide approach that captures GHUs by combining ChIP-chip with microarray datasets from Saccharomyces cerevisiae. Our approach employs noise-robust soft clustering to select patterns which share the same preferences in transcription factor-binding, histone modification and gene expression, which are all currently implied to be closely correlated. The detected patterns are a well-studied acetylation of lysine 16 of H4 in glucose depletion as well as co-acetylation of five lysine residues of H3 with H4 Lys12 and H2A Lys7 responsible for ribosome biogenesis. Furthermore, our method further suggested the recognition of acetylated H4 Lys16 being crucial to histone acetyltransferase ESA1, whose essential role is still under controversy, from a microarray dataset on ESA1 and its bypass suppressor mutants. These results demonstrate that our approach allows us to provide clearer principles behind gene regulation mechanisms under histone modifications and detect GHUs further by applying to other microarray and ChIP-chip datasets. The source code of our method, which was implemented in MATLAB (http://www.mathworks.com/), is available from the supporting page for this paper: http://www.bic.kyoto-u.ac.jp/pathway/natsume/hm_detector.htm

    Plant Diversity Changes during the Postglacial in East Asia: Insights from Forest Refugia on Halla Volcano, Jeju Island

    Get PDF
    Understanding how past climate changes affected biodiversity is a key issue in contemporary ecology and conservation biology. These diversity changes are, however, difficult to reconstruct from paleoecological sources alone, because macrofossil and pollen records do not provide complete information about species assemblages. Ecologists therefore use information from modern analogues of past communities in order to get a better understanding of past diversity changes. Here we compare plant diversity, species traits and environment between late-glacial Abies, early-Holocene Quercus, and mid-Holocene warm-temperate Carpinus forest refugia on Jeju Island, Korea in order to provide insights into postglacial changes associated with their replacement. Based on detailed study of relict communities, we propose that the late-glacial open-canopy conifer forests in southern part of Korean Peninsula were rich in vascular plants, in particular of heliophilous herbs, whose dramatic decline was caused by the early Holocene invasion of dwarf bamboo into the understory of Quercus forests, followed by mid-Holocene expansion of strongly shading trees such as maple and hornbeam. This diversity loss was partly compensated in the Carpinus forests by an increase in shade-tolerant evergreen trees, shrubs and lianas. However, the pool of these species is much smaller than that of light-demanding herbs, and hence the total species richness is lower, both locally and in the whole area of the Carpinus and Quercus forests. The strongly shading tree species dominating in the hornbeam forests have higher leaf tissue N and P concentrations and smaller leaf dry matter content, which enhances litter decomposition and nutrient cycling and in turn favored the selection of highly competitive species in the shrub layer. This further reduced available light and caused almost complete disappearance of understory herbs, including dwarf bamboo

    Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In male <it>Drosophila melanogaster</it>, the male specific lethal (MSL) complex is somehow responsible for a two-fold increase in transcription of most X-linked genes, which are enriched for histone H4 acetylated at lysine 16 (H4K16ac). This acetylation requires MOF, a histone acetyltransferase that is a component of the MSL complex. MOF also associates with the non-specific lethal or NSL complex. The MSL complex is bound within active genes on the male X chromosome with a 3' bias. In contrast, the NSL complex is enriched at promoter regions of many autosomal and X-linked genes in both sexes. In this study we have investigated the role of MOF as a transcriptional activator.</p> <p>Results</p> <p>MOF was fused to the DNA binding domain of Gal4 and targeted to the promoter region of UAS-reporter genes in <it>Drosophila</it>. We found that expression of a UAS-red fluorescent protein (DsRed) reporter gene was strongly induced by Gal4-MOF. However, DsRed RNA levels were about seven times higher in female than male larvae. Immunostaining of polytene chromosomes showed that Gal4-MOF co-localized with MSL1 to many sites on the X chromosome in male but not female nuclei. However, in female nuclei that express MSL2, Gal4-MOF co-localized with MSL1 to many sites on polytene chromosomes but DsRed expression was reduced. Mutation of conserved active site residues in MOF (Glu714 and Cys680) reduced HAT activity <it>in vitro </it>and UAS-DsRed activation in <it>Drosophila</it>. In the presence of Gal4-MOF, H4K16ac levels were enriched over UAS-<it>lacZ </it>and UAS-<it>arm-lacZ </it>reporter genes. The latter utilizes the constitutive promoter from the <it>arm </it>gene to drive <it>lacZ </it>expression. In contrast to the strong induction of UAS-DsRed expression, UAS-<it>arm-lacZ </it>expression increased by about 2-fold in both sexes.</p> <p>Conclusions</p> <p>Targeting MOF to reporter genes led to transcription enhancement and acetylation of histone H4 at lysine 16. Histone acetyltransferase activity was required for the full transcriptional response. Incorporation of Gal4-MOF into the MSL complex in males led to a lower transcription enhancement of UAS-<it>DsRed </it>but not UAS-<it>arm-lacZ </it>genes. We discuss how association of Gal4-MOF with the MSL or NSL proteins could explain our results.</p

    Fungal enzyme sets for plant polysaccharide degradation

    Get PDF
    Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families
    • …
    corecore