1,608 research outputs found

    Lifelong Learning Pathways: Addressing Participation and Diversity in Higher Education

    Full text link
    Tertiary education plays a major role in meeting the economic, social and cultural wellbeing of both individuals and the workforce of the future (OECD, 2011). Increasing participation in tertiary education is vital for the future of all Australians with the emphasis on the provision of increased participation critical. (Gillard, 2012; Bradley, Noonan, Nugent and Scales, 2008). This project reviewed higher education pathways models in the built environment discipline (construction management, quantity surveying, estimating, project management) to ascertain their capacity to improve diversity in the student cohort. This project included three significant objectives: to analyse the efficiency of existing examples of lifelong learning/pathways models in the built environment discipline in improving diversity of student cohort to develop schema to discern and identify elements of these models that contribute to best practice in creating opportunities for student diversity To isolate and disseminate the determinants of best practice pathways models for future use by the built environment discipline and other disciplines. Dissemination of project findings across both the built environment sector and the wider higher education audience was an important objective. The project helped to bring together a network of interested educators in built environment disciplines that were enthusiastic to implement changed practice in relation to pathways models. Industry and accreditation bodies engagement overwhelmed the project leaders, and provided further dissemination and discussion about the opportunities for innovation in built environment pathways

    A novel, molybdenum-containing methionine sulfoxide reductase supports survival of Haemophilus influenzae in an in vivo model of infection

    Full text link
    © 2016 Dhouib, Othman, Lin, Lai, Wijesinghe, Essilfie, Davis, Nasreen, Bernhardt, Hansbro, McEwan and Kappler. Haemophilus influenzae is a host adapted human mucosal pathogen involved in a variety of acute and chronic respiratory tract infections, including chronic obstructive pulmonary disease and asthma, all of which rely on its ability to efficiently establish continuing interactions with the host. Here we report the characterization of a novel molybdenum enzyme, TorZ/MtsZ that supports interactions of H. influenzae with host cells during growth in oxygen-limited environments. Strains lacking TorZ/MtsZ showed a reduced ability to survive in contact with epithelial cells as shown by immunofluorescence microscopy and adherence/invasion assays. This included a reduction in the ability of the strain to invade human epithelial cells, a trait that could be linked to the persistence of H. influenzae. The observation that in a murine model of H. influenzae infection, strains lacking TorZ/MtsZ were almost undetectable after 72 h of infection, while ~3.6 × 103 CFU/mL of the wild type strain were measured under the same conditions is consistent with this view. To understand how TorZ/MtsZ mediates this effect we purified and characterized the enzyme, and were able to show that it is an S- and N-oxide reductase with a stereospecificity for S-sulfoxides. The enzyme converts two physiologically relevant sulfoxides, biotin sulfoxide and methionine sulfoxide (MetSO), with the kinetic parameters suggesting that MetSO is the natural substrate of this enzyme. TorZ/MtsZ was unable to repair sulfoxides in oxidized Calmodulin, suggesting that a role in cell metabolism/energy generation and not protein repair is the key function of this enzyme. Phylogenetic analyses showed that H. influenzae TorZ/MtsZ is only distantly related to the Escherichia coli TorZ TMAO reductase, but instead is a representative of a new, previously uncharacterized clade of molybdenum enzyme that is widely distributed within the Pasteurellaceae family of pathogenic bacteria. It is likely that MtsZ/TorZ has a similar role in supporting host/pathogen interactions in other members of the Pasteurellaceae, which includes both human and animal pathogens

    Intrinsic type 1 interferon (IFN1) profile of uncultured human bone marrow CD45lowCD271+ multipotential stromal cells (BM-MSCs): the impact of donor age, culture expansion and IFNα and IFNβ stimulation

    Get PDF
    Skeletal aging is associated with reduced proliferative potential of bone marrow (BM) multipotential stromal cells (MSCs). Recent data suggest the involvement of type 1 interferon (IFN1) signalling in hematopoietic stem cell (HSC) senescence. Considering that BM-HSCs and BM-MSCs share the same BM niche, we investigated IFN1 expression profile in human BM-MSCs in relation to donor age, culture-expansion and IFN1 (α and β) stimulation. Fluorescence-activated cell sorting was used to purify uncultured BM-MSCs from younger (19–41, n = 6) and older (59–89, n = 6) donors based on the CD45lowCD271+ phenotype, and hematopoietic-lineage cells (BM-HLCs, CD45+CD271−) were used as controls. Gene expression was analysed using integrated circuits arrays in sorted fractions as well as cultured/stimulated BM-MSCs and Y201/Y202 immortalised cell lines. IFN1 stimulation led to BM-MSC growth arrest and upregulation of many IFN1-stimulated genes (ISGs), with IFNβ demonstrating stronger effects. Uncultured MSCs were characterised by a moderate-level ISG expression similar to Y201 cells. Age-related changes in ISG expression were negligible in BM-MSCs compared to BM-HLCs, and intracellular reactive oxygen species (ROS) levels in BM-MSCs did not significantly correlate with donor age. Antiaging genes Klotho and SIRT6 correlated with more ISGs in BM-MSCs than in BM-HLCs. In patients with osteoarthritis (OA), BM-MSCs expressed considerably lower levels of several ISGs, indicating that their IFN1 signature is affected in a pathological condition. In summary, BM-MSCs possess homeostatic IFN1 gene expression signature in health, which is sensitive to in vitro culture and external IFN1 stimulation. IFN signalling may facilitate in vivo BM-MSC responses to DNA damage and combating senescence and aberrant immune activation

    Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes

    No full text
    Bicarbonate is involved in a wide range of biological processes, which include respiration, regulation of intracellular pH and fertilization. In this study we use a combination of NMR spectroscopy and ion-selective electrode techniques to show that the natural product prodigiosin, a tripyrrolic molecule produced by microorganisms such as Streptomyces and Serratia, facilitates chloride/bicarbonate exchange (antiport) across liposomal membranes. Higher concentrations of simple synthetic molecules based on a 4,6-dihydroxyisophthalamide core are also shown to facilitate this antiport process. Although it is well known that proteins regulate Cl-/HCO3- exchange in cells, these results suggest that small molecules may also be able to regulate the concentration of these anions in biological systems

    Variability in Basal Melting Beneath Pine Island Ice Shelf on Weekly to Monthly Timescales

    Get PDF
    Ocean-driven basal melting of Amundsen Sea ice shelves has triggered acceleration, thinning, and grounding line retreat on many West Antarctic outlet glaciers. Here we present the first year-long (2014) record of basal melt rate at sub-weekly resolution from a location on the outer Pine Island Ice Shelf. Adjustment of the upper thermocline to local wind forced variability in the vertical Ekman velocity is the dominant control on basal melting at weekly to monthly timescales. Atmosphere-ice-ocean surface heat fluxes or changes in advection of modified Circumpolar Deep Water play no discernible role at these timescales. We propose that during other years, a deepening of the thermocline in Pine Island Bay driven by longer timescale processes may have suppressed the impact of local wind forcing on high-frequency upper thermocline height variability and basal melting. This highlights the complex interplay between the different processes and their timescales that set the basal melt rate beneath Pine Island Ice Shelf

    Dissection of Hypothalamic-Pituitary-Adrenal Axis Pathology in 1-Month-Abstinent Alcohol-Dependent Men, Part 2: Response to Ovine Corticotropin-Releasing Factor and Naloxone

    Full text link
    Pituitary and adrenal responsiveness is suppressed in abstinent alcohol-dependent individuals. To clarify the specific organizational disruption in hypothalamic-pituitary-adrenal functioning during early abstinence, the authors separately assessed each level of the stress-response axis. In this second of a two-part study, ovine corticotropin-releasing factor (oCRH) was used to stimulate the pituitary corticotrophs, and naloxone was used to activate the axis at the hypothalamic level. In addition, pulsatile characteristics of corticotropin and cortisol were assessed over a 12-hr period (0800 to 2000 hr). Methods : Eleven abstinent alcohol-dependent men and 10 healthy comparison participants were assessed. All participants were between the ages of 30 and 50 years, and alcohol-dependent patients were abstinent from 4 to 6 weeks. Basal concentrations of corticotropin and cortisol were obtained every 10 min from 0800 to 2000 hr and subjected to pulsatile analysis. Plasma corticotropin and cortisol concentrations were then obtained every 5 to 10 min after low-dose, intravenously administered doses of oCRH (0.4 μg/kg) or naloxone (0.125 mg/kg). Medications were administered at 2000 hr and the two challenge studies were separated by 48 hr. Results : Pulsatile analysis revealed that the mean corticotropin amplitude was increased in alcohol-dependent patients relative to controls ( p < 0.05). Other pulsatile characteristics of corticotropin and all cortisol pulsatile measures were not significantly different between the two groups. The integrated cortisol response to oCRH was significantly lower in alcohol-dependent patients compared with controls ( p < 0.01), but the integrated corticotropin response was not significantly different. In contrast, neither the corticotropin nor the cortisol response to naloxone was significantly different between groups. Conclusions : Adrenocorticoid hyposensitivity persists after oCRH infusion for at least 1 month after cessation of drinking, whereas hyporesponsiveness of the pituitary corticotrophs to CRH seems to resolve with continued abstinence. The authors suggest that adrenocortical hyporesponsiveness during prolonged abstinence may impact relapse risk.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65174/1/01.ALC.0000158939.25531.EE.pd

    Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor

    Get PDF
    derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2 under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2

    The influence of different anticoagulants and sample preparation methods on measurement of mCD14 on bovine monocytes and polymorphonuclear neutrophil leukocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Membrane-CD14 (mCD14) is expressed on the surface of monocytes, macrophages and polymorphonuclear neutrophil leukocytes (PMN). mCD14 acts as a co-receptor along with Toll like receptor 4 (TLR 4) and MD-2 for the detection of lipopolysaccharide (LPS). However, studies using different sample preparation methods and anticoagulants have reported different levels of mCD14 on the surface of monocytes and neutrophils. In this study, the influence of various anticoagulants and processing methods on measurement of mCD14 on monocytes and neutrophils was examined.</p> <p>Results</p> <p>Whole blood samples were collected in vacutainer tubes containing either sodium heparin (HEPARIN), ethylenediaminetetraacetic acid (EDTA) or sodium citrate (CITRATE). mCD14 on neutrophils and monocytes in whole blood samples or isolated cells was measured by the method of flow cytometry using fluorescein isothiocyanate (FITC)-labeled monoclonal antibody. There was a significant difference (<it>p </it>< 0.05) in the mean channel fluorescence intensity (MFI) of mCD14 on neutrophils in whole blood samples anticoagulated with HEPARIN (MFI = 64.77) in comparison with those in whole blood samples anticoagulated with either EDTA (MFI = 38.25) or CITRATE (MFI = 43.7). The MFI of mCD14 on monocytes in whole blood samples anticoagulted with HEPARIN (MFI = 206.90) was significantly higher than the MFI in whole blood samples anticoagulated with EDTA (MFI = 149.37) but similar to that with CITRATE (MFI = 162.55). There was no significant difference in the percentage of whole blood neutrophils or monocytes expressing mCD14 irrespective of type of anticoagulant used. However, MFI of mCD14 on monocytes was about 3.2-folds (HEPARIN), 3.9-folds (EDTA) or 3.7 folds (CITRATE) higher than those on neutrophils. Furthermore, there was no significant difference in mCD14 levels between unprocessed whole blood monocytes and monocytes in peripheral blood mononuclear cell preparation. Conversely, a highly significant difference was observed in mCD14 between unprocessed whole blood neutrophils and isolated neutrophils (<it>p </it>< 0.05).</p> <p>Conclusion</p> <p>From these results, it is suggested that sodium heparin should be the preferred anticoagulant for use in the reliable quantification of the surface expression of mCD14. Furthermore, measurement of mCD14 is best carried out in whole blood samples, both for neutrophils and monocytes.</p
    • …
    corecore