153 research outputs found

    Carbon dynamics in a Boreal land-stream-lake continuum during the spring freshet of two hydrologically contrasting years

    Get PDF
    We studied in 2013 and 2014 the spring carbon dynamics in a Boreal landscape consisting of a lake and 15 inflowing streams and an outlet. The first year had weather and a hydrological regime typical of past years with a distinct spring freshet connected with the thaw of the average snowpack. The latter year had higher air temperatures which did not permit snow accumulation, despite similar winter precipitation. As such, there was hardly any spring freshet in 2014, and stream discharge peaked in January, i.e., the conditions resembled those predicted in the future climate. Despite the hydrological differences between the years, there were only small interannual differences in the stream CO2 and DOC concentrations. The relationship between the concentrations and discharge was stronger in the typical year. CO2 concentrations in medium-sized streams correlated negatively with the discharge, indicating dilution effect of melting snowpacks, while in large-sized streams the correlation was positive, suggesting stronger groundwater influence. The DOC pathway to these streams was through the subsurface soil layers, not the groundwater. The total amount of carbon transported into the lake was ca. 1.5-fold higher in the typical year than in the year with warm winter. In 2013, most of the lateral inputs took place during spring freshet. In 2014, the majority of inputs occurred earlier, during the winter months. The lateral CO2 signal was visible in the lake at 1.5 m depth. DOC dominated the carbon transport, and in both years, 12% of the input C was in inorganic form.Peer reviewe

    CH4 and N2O dynamics in the boreal forest-mire ecotone

    Get PDF
    201

    Effects of plant functional group removal on CO(2)fluxes and belowground C stocks across contrasting ecosystems

    Get PDF
    Changes in plant communities can have large effects on ecosystem carbon (C) dynamics and long-term C stocks. However, how these effects are mediated by environmental context or vary among ecosystems is not well understood. To study this, we used a long-term plant removal experiment set up across 30 forested lake islands in northern Sweden that collectively represent a strong gradient of soil fertility and ecosystem productivity. We measured forest floor CO(2)exchange and aboveground and belowground C stocks for a 22-yr experiment involving factorial removal of the two dominant functional groups of the boreal forest understory, namely ericaceous dwarf shrubs and feather mosses, on each of the 30 islands. We found that long-term shrub and moss removal increased forest floor net CO(2)loss and decreased belowground C stocks consistently across the islands irrespective of their productivity or soil fertility. However, we did see context-dependent responses of respiration to shrub removals because removals only increased respiration on islands of intermediate productivity. Both CO(2)exchange and C stocks responded more strongly to shrub removal than to moss removal. Shrub removal reduced gross primary productivity of the forest floor consistently across the island gradient, but it had no effect on respiration, which suggests that loss of belowground C caused by the removals was driven by reduced litter inputs. Across the island gradient, shrub removal consistently depleted C stocks in the soil organic horizon by 0.8 kg C/m(2). Our results show that the effect of plant functional group diversity on C dynamics can be relatively consistent across contrasting ecosystems that vary greatly in productivity and soil fertility. These findings underline the key role of understory vegetation in forest C cycling, and suggest that global change leading to changes in the relative abundance of both shrubs and mosses could impact on the capacity of boreal forests to store C

    CH4 oxidation in a boreal lake during the development of hypolimnetic hypoxia

    Get PDF
    Freshwater ecosystems represent a significant natural source of methane (CH4). CH4 produced through anaerobic decomposition of organic matter (OM) in lake sediment and water column can be either oxidized to carbon dioxide (CO2) by methanotrophic microbes or emitted to the atmosphere. While the role of CH4 oxidation as a CH4 sink is widely accepted, neither the magnitude nor the drivers behind CH4 oxidation are well constrained. In this study, we aimed to gain more specific insight into CH4 oxidation in the water column of a seasonally stratified, typical boreal lake, particularly under hypoxic conditions. We used (CH4)-C-13 incubations to determine the active CH4 oxidation sites and the potential CH4 oxidation rates in the water column, and we measured environmental variables that could explain CH4 oxidation in the water column. During hypolimnetic hypoxia, 91% of available CH4 was oxidized in the active CH4 oxidation zone, where the potential CH4 oxidation rates gradually increased from the oxycline to the hypolimnion. Our results showed that in warm springs, which become more frequent, early thermal stratification with cold well-oxygenated hypolimnion delays the period of hypolimnetic hypoxia and limits CH4 production. Thus, the delayed development of hypolimnetic hypoxia may partially counteract the expected increase in the lacustrine CH4 emissions caused by the increasing organic carbon load from forested catchments.Peer reviewe

    Comparing ecosystem and soil respiration : Review and key challenges of tower-based and soil measurements

    Get PDF
    The net ecosystem exchange (NEE) is the difference between ecosystem CO2 assimilation and CO2 losses to the atmosphere. Ecosystem respiration (R-eco), the efflux of CO2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; R-soil) and aboveground plant respiration. Therefore, R-soil is a fraction of R-eco and theoretically has to be smaller than R-eco at daily, seasonal, and annual scales. However, several studies estimating R-eco with the eddy covariance technique and measuring R-soll within the footprint of the tower have reported higher R-soil than R-eco, at different time scales. Here, we compare four different and contrasting ecosystems (from forest to grasslands, and from boreal to semiarid) to test if measurements of R-eco are consistently higher than R-soil. In general, both fluxes showed similar temporal patterns, but R-eco, was not consistently higher than R-soil from daily to annual scales across sites. We identified several issues that apply for measuring NEE and measuring/upscaling R-soil that could result in an underestimation of R-eco and/or an overestimation of R-soil. These issues are discussed based on (a) nighttime measurements of NEE, (b) R-soil measurements, and (c) the interpretation of the functional relationships of these fluxes with temperature (i.e., Q(10)). We highlight that there is still a need for better integration of R-soil with eddy covariance measurements to address challenges related to the spatial and temporal variability of R-eco, and R-soil.Peer reviewe

    Looking deeper into the soil : biophysical controls and seasonal lags of soil CO2 production and efflux

    Get PDF
    Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 20 (2010): 1569–1582, doi:10.1890/09-0693.1.We seek to understand how biophysical factors such as soil temperature (Ts), soil moisture (Ξ), and gross primary production (GPP) influence CO2 fluxes across terrestrial ecosystems. Recent advancements in automated measurements and remote-sensing approaches have provided time series in which lags and relationships among variables can be explored. The purpose of this study is to present new applications of continuous measurements of soil CO2 efflux (F0) and soil CO2 concentrations measurements. Here we explore how variation in Ts, Ξ, and GPP (derived from NASA's moderate-resolution imaging spectroradiometer [MODIS]) influence F0 and soil CO2 production (Ps). We focused on seasonal variation and used continuous measurements at a daily timescale across four vegetation types at 13 study sites to quantify: (1) differences in seasonal lags between soil CO2 fluxes and Ts, Ξ, and GPP and (2) interactions and relationships between CO2 fluxes with Ts, Ξ, and GPP. Mean annual Ts did not explain annual F0 and Ps among vegetation types, but GPP explained 73% and 30% of the variation, respectively. We found evidence that lags between soil CO2 fluxes and Ts or GPP provide insights into the role of plant phenology and information relevant about possible timing of controls of autotrophic and heterotrophic processes. The influences of biophysical factors that regulate daily F0 and Ps are different among vegetation types, but GPP is a dominant variable for explaining soil CO2 fluxes. The emergence of long-term automated soil CO2 flux measurement networks provides a unique opportunity for extended investigations into F0 and Ps processes in the near future.Data collection was possible thanks to NASA, the NSF Center for Embedded Networked Sensing (CCR-0120778), DOE (DE-FG02-03ER63638), CONACyT, UCMEXUS, NSF (EF-0410408), NSF-LTER, KAKENHI (12878089 and 13480150), the Academy of Finland (213093), the Austrian Science Fund (FWF, P18756-B16), the Kearney Foundation, the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and the Natural Science and Engineering Research Council of Canada (NSERC). R. Vargas was supported by grant DEB-0639235 during the preparation of this manuscript

    Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management

    Get PDF
    The extreme 2018 hot drought that affected central and northern Europe led to the worst wildfire season in Sweden in over a century. The Ljusdal fire complex, the largest area burnt that year (8995 ha), offered a rare opportunity to quantify the combined impacts of wildfire and post-fire management on Scandinavian boreal forests. We present chamber measurements of soil CO2 and CH4 fluxes, soil microclimate and nutrient content from five Pinus sylvestris sites for the first growing season after the fire. We analysed the effects of three factors on forest soils: burn severity, salvage-logging and stand age. None of these caused significant differences in soil CH4 uptake. Soil respiration, however, declined significantly after a high-severity fire (complete tree mortality) but not after a low-severity fire (no tree mortality), despite substantial losses of the organic layer. Tree root respiration is thus key in determining post-fire soil CO2 emissions and may benefit, along with heterotrophic respiration, from the nutrient pulse after a low-severity fire. Salvage-logging after a high-severity fire had no significant effects on soil carbon fluxes, microclimate or nutrient content compared with leaving the dead trees standing, although differences are expected to emerge in the long term. In contrast, the impact of stand age was substantial: a young burnt stand experienced more extreme microclimate, lower soil nutrient supply and significantly lower soil respiration than a mature burnt stand, due to a thinner organic layer and the decade-long effects of a previous clear-cut and soil scarification. Disturbance history and burn severity are, therefore, important factors for predicting changes in the boreal forest carbon sink after wildfires. The presented short-term effects and ongoing monitoring will provide essential information for sustainable management strategies in response to the increasing risk of wildfire
    • 

    corecore