122 research outputs found

    Pancreatic acinar cell carcinoma : an analysis of cell lineage markers, P53 expression, and Ki-ras mutation

    No full text
    In a series of 22 pancreatic acinar cell carcinomas, including two acinar cystadenocarcinomas, cellular differentiation was analyzed by immunocytochemistry and electron microscopy. In addition, overexpression of p53 protein and Ki-ras codon 12 mutation was studied. Four of the 20 noncystic acinar cell carcinomas showed a pure acinar pattern, nine an acinar-solid, and seven a solid pattern. All tumors stained for at least one of the following pancreatic acinar markers: trypsin (21 of 22), lipase (19 of 22), chymotrypsin (13 of 22), phospholipase A2 (nine of 22), and pancreatic stone protein (19 of 22). One-third of the tumors expressed neuroendocrine markers (synaptophysin, eight of 22; chromogranin A, six of 21) and duct cell markers (CA19.9, nine of 21; B72.3, six of 21). Cellular coexpression of trypsin and synaptophysin was demonstrated in one tumor. Electron microscopy revealed zymogen granules (nine of nine). In only one of 16 tumors a Ki-ras mutation at codon 12 was found, whereas in none of 19 tumors could overexpression of p53 protein be demonstrated. The results suggest that acinar cell carcinomas show obvious capacity to differentiate into several directions, but nevertheless constitute an entity different from ductal adenocarcinomas or endocrine tumors

    α-Fetoprotein and human chorionic gonadotrophin-β as prognostic markers in neuroendocrine tumour patients

    Get PDF
    Serum chromogranin A is the most useful general and prognostic tumour marker available for neuroendocrine tumour (NET) patients. The role of other tumour markers is less clear. In order to determine the diagnostic and prognostic value of serum α-fetoprotein (AFP) and human chorionic gonadotrophin-β (hCGβ) in NETs, a database containing biochemical, histological, and survival data on 360 NET patients was constructed. This data was statistically assessed, using Statistical Package for the Social Sciences, to determine the utility of commonly measured tumour markers with particular emphasis on AFP and hCGβ. α-Fetoprotein and hCGβ were raised in 9.5 and 12.3% of patients respectively and jointly raised in 9.1% of patients in whom it was measured. α-Fetoprotein levels associated strongly and positively with tumour grade, serum CgA and hCGβ levels, and worse survival. Human chorionic gonadotrophin-β levels also associated strongly and positively with serum CgA and AFP levels, and worsening survival. α-Fetoprotein and hCGβ are elevated in high-grade NETs, with a rapidly progressive course and poorer survival. They also correlate with chromogranin-A, which is known to be a marker of tumour burden and to have prognostic value. Thus AFP and hCGβ are clinically important in NETs and when elevated are poor prognostic markers

    Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>RASSF1A </it>gene silencing by DNA methylation has been suggested as a major event in pancreatic endocrine tumor (PET) but <it>RASSF1A </it>expression has never been studied. The <it>RASSF1 </it>locus contains two CpG islands (<it>A </it>and <it>C</it>) and generates seven transcripts (<it>RASSF1A</it>-<it>RASSF1G</it>) by differential promoter usage and alternative splicing.</p> <p>Methods</p> <p>We studied 20 primary PETs, their matched normal pancreas and three PET cell lines for the (i) methylation status of the <it>RASSF1 </it>CpG islands using methylation-specific PCR and pyrosequencing and (ii) expression of <it>RASSF1 </it>isoforms by quantitative RT-PCR in 13 cases. CpG island A methylation was evaluated by methylation-specific PCR (MSP) and by quantitative methylation-specific PCR (qMSP); pyrosequencing was applied to quantify the methylation of 51 CpGs also encompassing those explored by MSP and qMSP approaches.</p> <p>Results</p> <p>MSP detected methylation in 16/20 (80%) PETs and 13/20 (65%) normal pancreas. At qMSP, 11/20 PETs (55%) and 9/20 (45%) normals were methylated in at least 20% of <it>RASSF1A </it>alleles.</p> <p>Pyrosequencing showed variable distribution and levels of methylation within and among samples, with PETs having average methylation higher than normals in 15/20 (75%) cases (<it>P </it>= 0.01). The evaluation of mRNA expression of <it>RASSF1 </it>variants showed that: i) <it>RASSF1A </it>was always expressed in PET and normal tissues, but it was, on average, expressed 6.8 times less in PET (<it>P </it>= 0.003); ii) <it>RASSF1A </it>methylation inversely correlated with its expression; iii) <it>RASSF1 </it>isoforms were rarely found, except for <it>RASSF1B </it>that was always expressed and <it>RASSF1C </it>whose expression was 11.4 times higher in PET than in normal tissue (<it>P </it>= 0.001). A correlation between <it>RASSF1A </it>expression and gene methylation was found in two of the three PET cell lines, which also showed a significant increase in <it>RASSF1A </it>expression upon demethylating treatment.</p> <p>Conclusions</p> <p><it>RASSF1A </it>gene methylation in PET is higher than normal pancreas in no more than 75% of cases and as such it cannot be considered a marker for this neoplasm. <it>RASSF1A </it>is always expressed in PET and normal pancreas and its levels are inversely correlated with gene methylation. Isoform <it>RASSF1C </it>is overexpressed in PET and the recent demonstration of its involvement in the regulation of the Wnt pathway points to a potential pathogenetic role in tumor development.</p

    Collision sellar lesions: experience with eight cases and review of the literature

    Get PDF
    The concomitant presence of a pituitary adenoma with a second sellar lesion in patients operated upon for pituitary adenoma is an uncommon entity. Although rare, quite a great variety of lesions have been indentified coexisting with pituitary adenomas. In fact, most combinations have been described before, but an overview with information on the frequency of combined pathologies in a large series has not been published. We present a series of eight collision sellar lesions indentified among 548 transsphenoidally resected pituitary adenomas in two Neurosurgical Departments. The histological studies confirmed a case of sarcoidosis within a non-functioning pituitary adenoma, a case of intrasellar schwannoma coexisting with growth hormone (GH) secreting adenoma, two Rathke’s cleft cysts combined with pituitary adenomas, three gangliocytomas associated with GH-secreting adenomas, and a case of a double pituitary adenoma. The pertinent literature is discussed with emphasis on pathogenetic theories of dual sellar lesions. Although there is no direct evidence to confirm the pathogenetic relationship of collision sellar lesions, the number of cases presented in literature makes the theory of an incidental occurrence rather doubtful. Suggested hypotheses about a common embryonic origin or a potential interaction between pituitary adenomas and the immune system are presented
    corecore