10 research outputs found

    Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case

    Get PDF
    The PTOLEMY project aims to develop a scalable design for a Cosmic NeutrinoBackground (CNB) detector, the first of its kind and the only one conceivedthat can look directly at the image of the Universe encoded in neutrinobackground produced in the first second after the Big Bang. The scope of thework for the next three years is to complete the conceptual design of thisdetector and to validate with direct measurements that the non-neutrinobackgrounds are below the expected cosmological signal. In this paper wediscuss in details the theoretical aspects of the experiment and its physicsgoals. In particular, we mainly address three issues. First we discuss thesensitivity of PTOLEMY to the standard neutrino mass scale. We then study theperspectives of the experiment to detect the CNB via neutrino capture ontritium as a function of the neutrino mass scale and the energy resolution ofthe apparatus. Finally, we consider an extra sterile neutrino with mass in theeV range, coupled to the active states via oscillations, which has beenadvocated in view of neutrino oscillation anomalies. This extra state wouldcontribute to the tritium decay spectrum, and its properties, mass and mixingangle, could be studied by analyzing the features in the beta decay electronspectrum

    Heisenberg's uncertainty principle in the PTOLEMY project : A theory update

    Get PDF
    We discuss the consequences of the quantum uncertainty on the spectrum of the electron emitted by the beta-processes of a tritium atom bound to a graphene sheet. We analyze quantitatively the issue recently raised by Cheipesh, Cheianov, and Boyarsky [Phys. Rev. D 104, 116004 (2021)], and discuss the relevant timescales and the degrees of freedom that can contribute to the intrinsic spread in the electron energy. We perform careful calculations of the potential between tritium and graphene with different coverages and geometries. With this at hand, we propose possible avenues to mitigate the effect of the quantum uncertainty

    New and Emerging Biomarkers in Cardiovascular Disease

    No full text
    corecore