2,601 research outputs found
alphabeta sequence of F is IS31
Previous studies have shown that there is a deoxyribonucleic acid (DNA) segment, of length 1.3 kb and denoted as the alphabeta sequence, which occurs twice on the F plasmid at corrdinates 93.2 to 94.5/OF kb and 13.7 to 15.0F kb. In the present investigation, heteroduplexes were prepared between a phage DNA carrying the insertion sequence IS3 and suitable F-prime DNAs. The hybrids formed show that IS3 is the same as alphabeta. This result plus previous studies support the view that: (i) the insertion sequence IS2 and IS3 occur on F and, in multiple copies, on the main bacterial chromosome of Escherichia coli K-12; and (ii)these IS sequences on the main bacterial chromosomes are hot spots for Hfr formation by reciprocal recombination with the corresponding sequences of F
Always talking to some purpose
AbstractDistinguished molecular biologist, Sydney Brenner, has said he won't write an autobiography. Mark Ptashne reviews the next best thing
Transcription: A Mechanism for Short-Term Memory
SummaryYeast growing for a considerable time in glucose ‘remember’ a previous exposure to galactose, the inducer of its galactose-utilization (GAL) genes. This memory is conveyed by a cytoplasmically transmitted galactokinase working as a signal transducer
Self consistent proteomic field theory of stochastic gene switches
We present a self-consistent field approximation to the problem of the
genetic switch composed of two mutually repressing/activating genes. The
protein and DNA state dynamics are treated stochastically and on equal footing.
In this approach the mean influence of the proteomic cloud created by one gene
on the action of another is self-consistently computed. Within this
approximation a broad range of stochastic genetic switches may be solved
exactly in terms of finding the probability distribution and its moments. A
much larger class of problems, such as genetic networks and cascades also
remain exactly solvable with this approximation. We discuss in depth certain
specific types of basic switches, which are used by biological systems and
compare their behavior to the expectation for a deterministic switch.Comment: 29 pages, 40 figure
Lambda's Switch: Lessons from a Module Swap
A recent experiment has replaced Cro, a crucial component of lambda's genetic switch, with the lac repressor (plus two lac operators). The resulting hybrid phage is viable, but a subtle phenotypic defect explains a puzzle concerning the workings of the switch
Stochastic dynamics of macromolecular-assembly networks
The formation and regulation of macromolecular complexes provides the
backbone of most cellular processes, including gene regulation and signal
transduction. The inherent complexity of assembling macromolecular structures
makes current computational methods strongly limited for understanding how the
physical interactions between cellular components give rise to systemic
properties of cells. Here we present a stochastic approach to study the
dynamics of networks formed by macromolecular complexes in terms of the
molecular interactions of their components. Exploiting key thermodynamic
concepts, this approach makes it possible to both estimate reaction rates and
incorporate the resulting assembly dynamics into the stochastic kinetics of
cellular networks. As prototype systems, we consider the lac operon and phage
lambda induction switches, which rely on the formation of DNA loops by proteins
and on the integration of these protein-DNA complexes into intracellular
networks. This cross-scale approach offers an effective starting point to move
forward from network diagrams, such as those of protein-protein and DNA-protein
interaction networks, to the actual dynamics of cellular processes.Comment: Open Access article available at
http://www.nature.com/msb/journal/v2/n1/full/msb4100061.htm
Effects of Kinks on DNA Elasticity
We study the elastic response of a worm-like polymer chain with reversible
kink-like structural defects. This is a generic model for (a) the
double-stranded DNA with sharp bends induced by binding of certain proteins,
and (b) effects of trans-gauche rotations in the backbone of the
single-stranded DNA. The problem is solved both analytically and numerically by
generalizing the well-known analogy to the Quantum Rotator. In the small
stretching force regime, we find that the persistence length is renormalized
due to the presence of the kinks. In the opposite regime, the response to the
strong stretching is determined solely by the bare persistence length with
exponential corrections due to the ``ideal gas of kinks''. This high-force
behavior changes significantly in the limit of high bending rigidity of the
chain. In that case, the leading corrections to the mechanical response are
likely to be due to the formation of multi-kink structures, such as kink pairs.Comment: v1: 16 pages, 7 figures, LaTeX; submitted to Physical Review E; v2: a
new subsection on soft kinks added to section Theory, sections Introduction
and Conclusions expanded, references added, other minor changes; v3: a
reference adde
A quantitative comparison of sRNA-based and protein-based gene regulation
Small, non-coding RNAs (sRNAs) play important roles as genetic regulators in
prokaryotes. sRNAs act post-transcriptionally via complementary pairing with
target mRNAs to regulate protein expression. We use a quantitative approach to
compare and contrast sRNAs with conventional transcription factors (TFs) to
better understand the advantages of each form of regulation. In particular, we
calculate the steady-state behavior, noise properties, frequency-dependent gain
(amplification), and dynamical response to large input signals of both forms of
regulation. While the mean steady-state behavior of sRNA-regulated proteins
exhibits a distinctive tunable threshold-linear behavior, our analysis shows
that transcriptional bursting leads to significantly higher intrinsic noise in
sRNA-based regulation than in TF-based regulation in a large range of
expression levels and limits the ability of sRNAs to perform quantitative
signaling. Nonetheless, we find that sRNAs are better than TFs at filtering
noise in input signals. Additionally, we find that sRNAs allow cells to respond
rapidly to large changes in input signals. These features suggest a niche for
sRNAs in allowing cells to transition quickly yet reliably between distinct
states. This functional niche is consistent with the widespread appearance of
sRNAs in stress-response and quasi-developmental networks in prokaryotes.Comment: 26 pages, 8 figures; accepted for publication in Molecular Systems
Biolog
- …