2,601 research outputs found

    Horace Judson (1931–2011)

    Get PDF

    alphabeta sequence of F is IS31

    Get PDF
    Previous studies have shown that there is a deoxyribonucleic acid (DNA) segment, of length 1.3 kb and denoted as the alphabeta sequence, which occurs twice on the F plasmid at corrdinates 93.2 to 94.5/OF kb and 13.7 to 15.0F kb. In the present investigation, heteroduplexes were prepared between a phage DNA carrying the insertion sequence IS3 and suitable F-prime DNAs. The hybrids formed show that IS3 is the same as alphabeta. This result plus previous studies support the view that: (i) the insertion sequence IS2 and IS3 occur on F and, in multiple copies, on the main bacterial chromosome of Escherichia coli K-12; and (ii)these IS sequences on the main bacterial chromosomes are hot spots for Hfr formation by reciprocal recombination with the corresponding sequences of F

    Francois Jacob (1920-2013)

    Get PDF

    Always talking to some purpose

    Get PDF
    AbstractDistinguished molecular biologist, Sydney Brenner, has said he won't write an autobiography. Mark Ptashne reviews the next best thing

    Transcription: A Mechanism for Short-Term Memory

    Get PDF
    SummaryYeast growing for a considerable time in glucose ‘remember’ a previous exposure to galactose, the inducer of its galactose-utilization (GAL) genes. This memory is conveyed by a cytoplasmically transmitted galactokinase working as a signal transducer

    Self consistent proteomic field theory of stochastic gene switches

    Full text link
    We present a self-consistent field approximation to the problem of the genetic switch composed of two mutually repressing/activating genes. The protein and DNA state dynamics are treated stochastically and on equal footing. In this approach the mean influence of the proteomic cloud created by one gene on the action of another is self-consistently computed. Within this approximation a broad range of stochastic genetic switches may be solved exactly in terms of finding the probability distribution and its moments. A much larger class of problems, such as genetic networks and cascades also remain exactly solvable with this approximation. We discuss in depth certain specific types of basic switches, which are used by biological systems and compare their behavior to the expectation for a deterministic switch.Comment: 29 pages, 40 figure

    Lambda's Switch: Lessons from a Module Swap

    Get PDF
    A recent experiment has replaced Cro, a crucial component of lambda's genetic switch, with the lac repressor (plus two lac operators). The resulting hybrid phage is viable, but a subtle phenotypic defect explains a puzzle concerning the workings of the switch

    Stochastic dynamics of macromolecular-assembly networks

    Get PDF
    The formation and regulation of macromolecular complexes provides the backbone of most cellular processes, including gene regulation and signal transduction. The inherent complexity of assembling macromolecular structures makes current computational methods strongly limited for understanding how the physical interactions between cellular components give rise to systemic properties of cells. Here we present a stochastic approach to study the dynamics of networks formed by macromolecular complexes in terms of the molecular interactions of their components. Exploiting key thermodynamic concepts, this approach makes it possible to both estimate reaction rates and incorporate the resulting assembly dynamics into the stochastic kinetics of cellular networks. As prototype systems, we consider the lac operon and phage lambda induction switches, which rely on the formation of DNA loops by proteins and on the integration of these protein-DNA complexes into intracellular networks. This cross-scale approach offers an effective starting point to move forward from network diagrams, such as those of protein-protein and DNA-protein interaction networks, to the actual dynamics of cellular processes.Comment: Open Access article available at http://www.nature.com/msb/journal/v2/n1/full/msb4100061.htm

    Effects of Kinks on DNA Elasticity

    Full text link
    We study the elastic response of a worm-like polymer chain with reversible kink-like structural defects. This is a generic model for (a) the double-stranded DNA with sharp bends induced by binding of certain proteins, and (b) effects of trans-gauche rotations in the backbone of the single-stranded DNA. The problem is solved both analytically and numerically by generalizing the well-known analogy to the Quantum Rotator. In the small stretching force regime, we find that the persistence length is renormalized due to the presence of the kinks. In the opposite regime, the response to the strong stretching is determined solely by the bare persistence length with exponential corrections due to the ``ideal gas of kinks''. This high-force behavior changes significantly in the limit of high bending rigidity of the chain. In that case, the leading corrections to the mechanical response are likely to be due to the formation of multi-kink structures, such as kink pairs.Comment: v1: 16 pages, 7 figures, LaTeX; submitted to Physical Review E; v2: a new subsection on soft kinks added to section Theory, sections Introduction and Conclusions expanded, references added, other minor changes; v3: a reference adde

    A quantitative comparison of sRNA-based and protein-based gene regulation

    Get PDF
    Small, non-coding RNAs (sRNAs) play important roles as genetic regulators in prokaryotes. sRNAs act post-transcriptionally via complementary pairing with target mRNAs to regulate protein expression. We use a quantitative approach to compare and contrast sRNAs with conventional transcription factors (TFs) to better understand the advantages of each form of regulation. In particular, we calculate the steady-state behavior, noise properties, frequency-dependent gain (amplification), and dynamical response to large input signals of both forms of regulation. While the mean steady-state behavior of sRNA-regulated proteins exhibits a distinctive tunable threshold-linear behavior, our analysis shows that transcriptional bursting leads to significantly higher intrinsic noise in sRNA-based regulation than in TF-based regulation in a large range of expression levels and limits the ability of sRNAs to perform quantitative signaling. Nonetheless, we find that sRNAs are better than TFs at filtering noise in input signals. Additionally, we find that sRNAs allow cells to respond rapidly to large changes in input signals. These features suggest a niche for sRNAs in allowing cells to transition quickly yet reliably between distinct states. This functional niche is consistent with the widespread appearance of sRNAs in stress-response and quasi-developmental networks in prokaryotes.Comment: 26 pages, 8 figures; accepted for publication in Molecular Systems Biolog
    corecore