Small, non-coding RNAs (sRNAs) play important roles as genetic regulators in
prokaryotes. sRNAs act post-transcriptionally via complementary pairing with
target mRNAs to regulate protein expression. We use a quantitative approach to
compare and contrast sRNAs with conventional transcription factors (TFs) to
better understand the advantages of each form of regulation. In particular, we
calculate the steady-state behavior, noise properties, frequency-dependent gain
(amplification), and dynamical response to large input signals of both forms of
regulation. While the mean steady-state behavior of sRNA-regulated proteins
exhibits a distinctive tunable threshold-linear behavior, our analysis shows
that transcriptional bursting leads to significantly higher intrinsic noise in
sRNA-based regulation than in TF-based regulation in a large range of
expression levels and limits the ability of sRNAs to perform quantitative
signaling. Nonetheless, we find that sRNAs are better than TFs at filtering
noise in input signals. Additionally, we find that sRNAs allow cells to respond
rapidly to large changes in input signals. These features suggest a niche for
sRNAs in allowing cells to transition quickly yet reliably between distinct
states. This functional niche is consistent with the widespread appearance of
sRNAs in stress-response and quasi-developmental networks in prokaryotes.Comment: 26 pages, 8 figures; accepted for publication in Molecular Systems
Biolog