The formation and regulation of macromolecular complexes provides the
backbone of most cellular processes, including gene regulation and signal
transduction. The inherent complexity of assembling macromolecular structures
makes current computational methods strongly limited for understanding how the
physical interactions between cellular components give rise to systemic
properties of cells. Here we present a stochastic approach to study the
dynamics of networks formed by macromolecular complexes in terms of the
molecular interactions of their components. Exploiting key thermodynamic
concepts, this approach makes it possible to both estimate reaction rates and
incorporate the resulting assembly dynamics into the stochastic kinetics of
cellular networks. As prototype systems, we consider the lac operon and phage
lambda induction switches, which rely on the formation of DNA loops by proteins
and on the integration of these protein-DNA complexes into intracellular
networks. This cross-scale approach offers an effective starting point to move
forward from network diagrams, such as those of protein-protein and DNA-protein
interaction networks, to the actual dynamics of cellular processes.Comment: Open Access article available at
http://www.nature.com/msb/journal/v2/n1/full/msb4100061.htm