107 research outputs found

    Estimating bank default with generalised extreme value regression models

    Get PDF
    The paper proposes a novel model for the prediction of bank failures, on the basis of both macroeconomic and bank-specific microeconomic factors. As bank failures are rare, in the paper we apply a regression method for binary data based on extreme value theory, which turns out to be more effective than classical logistic regression models, as it better leverages the information in the tail of the default distribution. The application of this model to the occurrence of bank defaults in a highly bank dependent economy (Italy) shows that, while microeconomic factors as well as regulatory capital are significant to explain proper failures, macroeconomic factors are relevant only when failures are defined not only in terms of actual defaults but also in terms of mergers and acquisitions. In terms of predictive accuracy, the model based on extreme value theory outperforms classical logistic regression models

    Target Region Selection Is a Critical Determinant of Community Fingerprints Generated by 16S Pyrosequencing

    Get PDF
    Pyrosequencing of 16S rRNA genes allows for in-depth characterization of complex microbial communities. Although it is known that primer selection can influence the profile of a community generated by sequencing, the extent and severity of this bias on deep-sequencing methodologies is not well elucidated. We tested the hypothesis that the hypervariable region targeted for sequencing and primer degeneracy play important roles in influencing the composition of 16S pyrotag communities. Subgingival plaque from deep sites of current smokers with chronic periodontitis was analyzed using Sanger sequencing and pyrosequencing using 4 primer pairs. Greater numbers of species were detected by pyrosequencing than by Sanger sequencing. Rare taxa constituted nearly 6% of each pyrotag community and less than 1% of the Sanger sequencing community. However, the different target regions selected for pyrosequencing did not demonstrate a significant difference in the number of rare and abundant taxa detected. The genera Prevotella, Fusobacterium, Streptococcus, Granulicatella, Bacteroides, Porphyromonas and Treponema were abundant when the V1–V3 region was targeted, while Streptococcus, Treponema, Prevotella, Eubacterium, Porphyromonas, Campylobacer and Enterococcus predominated in the community generated by V4–V6 primers, and the most numerous genera in the V7–V9 community were Veillonella, Streptococcus, Eubacterium, Enterococcus, Treponema, Catonella and Selenomonas. Targeting the V4–V6 region failed to detect the genus Fusobacterium, while the taxa Selenomonas, TM7 and Mycoplasma were not detected by the V7–V9 primer pairs. The communities generated by degenerate and non-degenerate primers did not demonstrate significant differences. Averaging the community fingerprints generated by V1–V3 and V7–V9 primers providesd results similar to Sanger sequencing, while allowing a significantly greater depth of coverage than is possible with Sanger sequencing. It is therefore important to use primers targeted to these two regions of the 16S rRNA gene in all deep-sequencing efforts to obtain representational characterization of complex microbial communities

    Pyrosequencing as a tool for better understanding of human microbiomes

    Get PDF
    Next-generation sequencing technologies have revolutionized the analysis of microbial communities in diverse environments, including the human body. This article reviews several aspects of one of these technologies, the pyrosequencing technique, including its principles, applications, and significant contribution to the study of the human microbiome, with especial emphasis on the oral microbiome. The results brought about by pyrosequencing studies have significantly contributed to refining and augmenting the knowledge of the community membership and structure in and on the human body in healthy and diseased conditions. Because most oral infectious diseases are currently regarded as biofilm-related polymicrobial infections, high-throughput sequencing technologies have the potential to disclose specific patterns related to health or disease. Further advances in technology hold the perspective to have important implications in terms of accurate diagnosis and more effective preventive and therapeutic measures for common oral diseases

    One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers

    Get PDF
    Background: The aim of this study was to characterise the microbiome of new and recurrent diabetic foot ulcers using 16S amplicon sequencing (16S AS), allowing the identification of a wider range of bacterial species that may be important in the development of chronicity in these debilitating wounds. Twenty patients not receiving antibiotics for the past three months were selected, with swabs taken from each individual for culture and 16S AS. DNA was isolated using a combination of bead beating and kit extraction. Samples were sequenced on the Illumina Hiseq 2500 platform. Results: Conventional laboratory culture showed positive growth from only 55 % of the patients, whereas 16S AS was positive for 75 % of the patients (41 unique genera, representing 82 different operational taxonomic units (OTU’s). S. aureus was isolated in 72 % of culture-positive samples, whereas the most commonly detected bacteria in all ulcers were Peptoniphilusspp., Anaerococcus spp. and Corynebacterium spp., with the addition of Staphylococcus spp. in new ulcers. The majority of OTU’s residing in both new and recurrent ulcers (over 67 %) were identified as facultative or strict anaerobic Gram-positive organisms. Principal component analysis (PCA) showed no difference in clustering between the two groups (new and recurrent ulcers). Conclusions: The abundance of anaerobic bacteria has important implications for treatment as it suggests that the microbiome of each ulcer “starts afresh” and that, although diverse, are not distinctly different from one another with respect to new or recurrent ulcers. Therefore, when considering antibiotic therapy the duration of current ulceration may be a more important consideration than a history of healed ulcer

    Dogs Leaving the ICU Carry a Very Large Multi-Drug Resistant Enterococcal Population with Capacity for Biofilm Formation and Horizontal Gene Transfer

    Get PDF
    The enterococcal community from feces of seven dogs treated with antibiotics for 2–9 days in the veterinary intensive care unit (ICU) was characterized. Both, culture-based approach and culture-independent 16S rDNA amplicon 454 pyrosequencing, revealed an abnormally large enterococcal community: 1.4±0.8×108 CFU gram−1 of feces and 48.9±11.5% of the total 16,228 sequences, respectively. The diversity of the overall microbial community was very low which likely reflects a high selective antibiotic pressure. The enterococcal diversity based on 210 isolates was also low as represented by Enterococcus faecium (54.6%) and Enterococcus faecalis (45.4%). E. faecium was frequently resistant to enrofloxacin (97.3%), ampicillin (96.5%), tetracycline (84.1%), doxycycline (60.2%), erythromycin (53.1%), gentamicin (48.7%), streptomycin (42.5%), and nitrofurantoin (26.5%). In E. faecalis, resistance was common to tetracycline (59.6%), erythromycin (56.4%), doxycycline (53.2%), and enrofloxacin (31.9%). No resistance was detected to vancomycin, tigecycline, linezolid, and quinupristin/dalfopristin in either species. Many isolates carried virulence traits including gelatinase, aggregation substance, cytolysin, and enterococcal surface protein. All E. faecalis strains were biofilm formers in vitro and this phenotype correlated with the presence of gelE and/or esp. In vitro intra-species conjugation assays demonstrated that E. faecium were capable of transferring tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin resistance traits to human clinical strains. Multi-locus variable number tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE) of E. faecium strains showed very low genotypic diversity. Interestingly, three E. faecium clones were shared among four dogs suggesting their nosocomial origin. Furthermore, multi-locus sequence typing (MLST) of nine representative MLVA types revealed that six sequence types (STs) originating from five dogs were identical or closely related to STs of human clinical isolates and isolates from hospital outbreaks. It is recommended to restrict close physical contact between pets released from the ICU and their owners to avoid potential health risks

    Crucial role of calbindin-D28k in the pathogenesis of Alzheimer's disease mouse model

    Get PDF
    Calbindin-D28k (CB), one of the major calcium-binding and buffering proteins, has a critical role in preventing a neuronal death as well as maintaining calcium homeostasis. Although marked reductions of CB expression have been observed in the brains of mice and humans with Alzheimer disease (AD), it is unknown whether these changes contribute to AD-related dysfunction. To determine the pathogenic importance of CB depletions in AD models, we crossed 5 familial AD mutations (5XFAD; Tg) mice with CB knock-out (CBKO) mice and generated a novel line CBKO·5XFAD (CBKOTg) mice. We first identified the change of signaling pathways and differentially expressed proteins globally by removing CB in Tg mice using mass spectrometry and antibody microarray. Immunohistochemistry showed that CBKOTg mice had significant neuronal loss in the subiculum area without changing the magnitude (number) of amyloid β-peptide (Aβ) plaques deposition and elicited significant apoptotic features and mitochondrial dysfunction compared with Tg mice. Moreover, CBKOTg mice reduced levels of phosphorylated mitogen-activated protein kinase (extracellular signal-regulated kinase) 1/2 and cAMP response element-binding protein at Ser-133 and synaptic molecules such as N-methyl-D-aspartate receptor 1 (NMDA receptor 1), NMDA receptor 2A, PSD-95 and synaptophysin in the subiculum compared with Tg mice. Importantly, this is the first experimental evidence that removal of CB from amyloid precursor protein/presenilin transgenic mice aggravates AD pathogenesis, suggesting that CB has a critical role in AD pathogenesis

    Functional kinomics establishes a critical node of volume-sensitive cation-Cl<sup>-</sup> cotransporter regulation in the mammalian brain

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.There is another record in ORE for this publication: http://hdl.handle.net/10871/33424Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation – a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl−-sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl− uptake and stimulation of KCC3-mediated Cl− extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought “Cl−/volume-sensitive kinase” of the cation-Cl− cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.We thank the excellent technical support of the MRC-Protein Phosphorylation and Ubiquitylation Unit (PPU) DNA Sequencing Service (coordinated by Nicholas Helps), the MRC-PPU tissue culture team (coordinated by Laura Fin), the Division of Signal Transduction Therapy (DSTT) antibody purification teams (coordinated by Hilary McLauchlan and James Hastie). We are grateful to the MRC PPU Proteomics facility (coordinated by David Campbell, Robert Gourlay and Joby Varghese). We thank for support the Medical Research Council (MC_UU_12016/2; DRA) and the pharmaceutical companies supporting the Division of Signal Transduction Therapy Unit (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KGaA, Janssen Pharmaceutica and Pfizer; DRA). We thank Thomas J. Jentsch (Max-Delbrück-Centrum für Molekulare Medizin) for providing the KCC1/3 double KO mice and his reading of this manuscript. We thank Nathaniel Grey (Harvard) for providing the kinase inhibitor library used in this study (NIH LINCS Program grant U54HL127365). This work was also supported by a Harvard-MIT Neuroscience Grant (to KTK/SJE)

    Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Inflammation and Metabolic Dysfunction in Diet-Induced Obese Mice

    Get PDF
    We investigated the relationship between gut health, visceral fat dysfunction and metabolic disorders in diet-induced obesity. C57BL/6J mice were fed control or high saturated fat diet (HFD). Circulating glucose, insulin and inflammatory markers were measured. Proximal colon barrier function was assessed by measuring transepithelial resistance and mRNA expression of tight-junction proteins. Gut microbiota profile was determined by 16S rDNA pyrosequencing. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 mRNA levels were measured in proximal colon, adipose tissue and liver using RT-qPCR. Adipose macrophage infiltration (F4/80+) was assessed using immunohistochemical staining. HFD mice had a higher insulin/glucose ratio (P = 0.020) and serum levels of serum amyloid A3 (131%; P = 0.008) but reduced circulating adiponectin (64%; P = 0.011). In proximal colon of HFD mice compared to mice fed the control diet, transepithelial resistance and mRNA expression of zona occludens 1 were reduced by 38% (P<0.001) and 40% (P = 0.025) respectively and TNF-α mRNA level was 6.6-fold higher (P = 0.037). HFD reduced Lactobacillus (75%; P<0.001) but increased Oscillibacter (279%; P = 0.004) in fecal microbiota. Correlations were found between abundances of Lactobacillus (r = 0.52; P = 0.013) and Oscillibacter (r = −0.55; P = 0.007) with transepithelial resistance of the proximal colon. HFD increased macrophage infiltration (58%; P = 0.020), TNF-α (2.5-fold, P<0.001) and IL-6 mRNA levels (2.5-fold; P = 0.008) in mesenteric fat. Increased macrophage infiltration in epididymal fat was also observed with HFD feeding (71%; P = 0.006) but neither TNF-α nor IL-6 was altered. Perirenal and subcutaneous adipose tissue showed no signs of inflammation in HFD mice. The current results implicate gut dysfunction, and attendant inflammation of contiguous adipose, as salient features of the metabolic dysregulation of diet-induced obesity

    Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    Get PDF
    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality
    corecore