1,397 research outputs found

    The Diverse and Dynamic Nature of Leishmania Parasitophorous Vacuoles Studied by Multidimensional Imaging

    Get PDF
    An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs) by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i) hosting amastigotes of either L. major or L. amazonensis and ii) loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i) entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii) the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii) the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms

    Effects of APOE, APOB and LDLR variants on serum lipids and lack of association with xanthelasma in individuals from Southeastern Brazil

    Get PDF
    Xanthelasma might be a clinical manifestation of dyslipidemia, a recognized risk factor for coronary artery disease. We investigated the association of apolipoprotein E (APOE HhaI), apolipoprotein B (APOB XbaI and Ins/Del) and LDL receptor (LDLR AvaII and HincII) gene polymorphisms with lipid profiles in 100 Brazilians with xanthelasma and 100 controls. Allele frequencies were similar in both groups. APOE, APOB and LDLR genotypes were not correlated with differences in the serum lipid profile. In individuals with xanthelasma, the APOB D allele was associated with less chance of having increased LDL-cholesterol (O.R. = 0.16, CI95% = 0.03-0.94, p = 0.042). In the control group, the APOB X+ allele was associated with less chance of having both increased total cholesterol (O.R. = 0.16, CI95% = 0.03-0.78, p = 0.023) and increased LDL-cholesterol (O.R. = 0.10, CI95% = 0.02-0.60, p = 0.012). Moreover, there was a significantly higher frequency of control individuals (68%) with elevated serum triglyceride levels, compared to patients (48%, p = 0.008). On the other hand, triglyceride levels in controls also seemed to be influenced by all other gene polymorphisms studied, an effect that might be enhanced by environmental factors

    The exported protein PbCP1 localises to cleft-like structures in the rodent malaria parasite Plasmodium berghei

    Get PDF
    Protein export into the host red blood cell is one of the key processes in the pathobiology of the malaria parasite Plasmodiumtrl falciparum, which extensively remodels the red blood cell to ensure its virulence and survival. In this study, we aimed to shed further light on the protein export mechanisms in the rodent malaria parasite P. berghei and provide further proof of the conserved nature of host cell remodeling in Plasmodium spp. Based on the presence of an export motif (R/KxLxE/Q/D) termed PEXEL (Plasmodium export element), we have generated transgenic P. berghei parasite lines expressing GFP chimera of putatively exported proteins and analysed one of the newly identified exported proteins in detail. This essential protein, termed PbCP1 (P. berghei Cleft-like Protein 1), harbours an atypical PEXEL motif (RxLxY) and is further characterised by two predicted transmembrane domains (2TMD) in the C-terminal end of the protein. We have functionally validated the unusual PEXEL motif in PbCP1 and analysed the role of the 2TMD region, which is required to recruit PbCP1 to discrete membranous structures in the red blood cell cytosol that have a convoluted, vesico-tubular morphology by electron microscopy. Importantly, this study reveals that rodent malaria species also induce modifications to their host red blood cell
    • 

    corecore