1,648 research outputs found
Building sustainability assessment methods
Over last 15 years it has been increasingly important to understand the sustainability performance of buildings across a broad range of considerations. This has stimulated the development of a number of sustainability assessment tools intended to measure objectively a project's impact in sustainability terms and so encourage designers and planners to improve a building's performance. This paper examines the nature and contribution, as well as the limitations, of current sustainability rating assessment tools in evaluating building sustainability in different countries. Two yardsticks are used to review the current tools: first, how well they relate to the goal of sustainable development, and second, how adequately they adhere to the principles of objective assessment. Scope for further development of sustainability assessment tools is identified – in particular, the need for tools to assess more adequately how buildings provide well-being, and to expand how assessment systems capture qualitative information. The paper proposes that methodology and procedures of assessment methods should feature the broad participation of user groups drawn from the public. This paper was first published in the Proceedings of the Institution of Civil Engineers - Engineering Sustainability and is reproduced with their permission http://www.icevirtuallibrary.com/content/journals Permission is granted by ICE Publishing to print one copy for personal use. Any other use of these PDF files is subject to reprint fees.</p
Identification and characterization of a novel non-structural protein of bluetongue virus
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Why Spiking Neural Networks Are Efficient: A Theorem
Current artificial neural networks are very successful in many machine learning applications, but in some cases they still lag behind human abilities. To improve their performance, a natural idea is to simulate features of biological neurons which are not yet implemented in machine learning. One of such features is the fact that in biological neural networks, signals are represented by a train of spikes. Researchers have tried adding this spikiness to machine learning and indeed got very good results, especially when processing time series (and, more generally, spatio-temporal data). In this paper, we provide a theoretical explanation for this empirical success
Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins
The diet of early human ancestors has received renewed theoretical interest since the discovery of elevated d13C values in the enamel of Australopithecus africanus and Paranthropus robustus. As a result, the hominin diet is hypothesized to have included C4 grass or the tissues of animals which themselves consumed C4 grass. On mechanical grounds, such a diet is incompatible with the dental morphology and dental microwear of early hominins. Most inferences, particularly for Paranthropus, favor a diet of hard or mechanically resistant foods. This discrepancy has invigorated the longstanding hypothesis that hominins consumed plant underground storage organs (USOs). Plant USOs are attractive candidate foods because many bulbous grasses and cormous sedges use C4 photosynthesis. Yet mechanical data for USOs—or any putative hominin food—are scarcely known. To fill this empirical void we measured the mechanical properties of USOs from 98 plant species from across sub-Saharan Africa. We found that rhizomes were the most resistant to deformation and fracture, followed by tubers, corms, and bulbs. An important result of this study is that corms exhibited low toughness values (mean = 265.0 J m-2) and relatively high Young’s modulus values (mean = 4.9 MPa). This combination of properties fits many descriptions of the hominin diet as consisting of hard-brittle objects. When compared to corms, bulbs are tougher (mean = 325.0 J m-2) and less stiff (mean = 2.5 MPa). Again, this combination of traits resembles dietary inferences, especially for Australopithecus, which is predicted to have consumed soft-tough foods. Lastly, we observed the roasting behavior of Hadza hunter-gatherers and measured the effects of roasting on the toughness on undomesticated tubers. Our results support assumptions that roasting lessens the work of mastication, and, by inference, the cost of digestion. Together these findings provide the first mechanical basis for discussing the adaptive advantages of roasting tubers and the plausibility of USOs in the diet of early hominins
Reporting of ethical approval and informed consent in clinical research published in leading nursing journals : a retrospective observational study
Background: Ethical considerations play a prominent role in the protection of human subjects in clinical research. To date the disclosure of ethical protection in clinical research published in the international nursing journals has not been explored. Our research objective was to investigate the reporting of ethical approval and informed consent in clinical research published in leading international nursing journals.
Methods: This is a retrospective observational study. All clinical research published in the five leading international nursing journals from the SCI Journal Citation Reports between 2015 and 2017 were retrieved to evaluate for evidence of ethical review.
Results: A total of 2041 citations have been identified from the contents of all the five leading nursing journals that were published between 2015 and 2017. Out of these, 1284 clinical studies have been included and text relating to ethical review has been extracted. From these, most of prospective clinical studies (87.5%) discussed informed consent. Only half of those (52.9%) reported that written informed consent had been obtained; few (3.6%) reported oral consent, and few (6.8%) used other methods such as online consent or completion and return of data collection (such as surveys) to denote assent. Notably, 36.2% of those did not describe the method used to obtain informed consent and merely described that “consent was obtained from participants or participants agreed to join in the research”. Furthermore, whilst most of clinical studies (93.7%) mentioned ethical approval; 92.5% of those stated the name of ethical committee and interestingly, only 37.1% of those mentioned the ethical approval reference. The rates of reporting ethical approval were different between different study type, country, and whether financial support was received (all P<0.05).
Conclusion: The reporting of ethics in leading international nursing journals demonstrates progress, but improvement of the transparency and the standard of ethical reporting in nursing clinical research is required
Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies
Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes.This work was funded in part by the National Institutes of Health (R01 AI50234, AI124678 and AI109023) and a Burroughs Wellcome Fund Investigator in Pathogenesis of Infectious Diseases award to D.A.F. This research also received funding from the Portuguese Fundacao para a Ciencia e Tecnologia (FCT), cofunded by Programa Operacional Regional do Norte (ON.2-O Novo Norte); from the Quadro de Referencia Estrategico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER) and from the Projeto Estrategico - LA 26 - 2013-2014 (PEst-C/SAU/LA0026/2013). M.I.V. is the recipient of a postdoctoral fellowship from FCT/Ministerio da Ciencia e Ensino Superior, Portugal-MCES (SFRH/BPD/76614/2011). A.M.L. was supported by an Australian National Health and Medical Research Council (NHMRC) Overseas Biomedical Fellowship (585519). R.E.M. was supported by an NHMRC RD Wright Biomedical Fellowship (1053082). A.C.U. was supported by an Irving scholarship from Columbia University. We thank Dr Andrea Ecker for her help with plasmid design and Pedro Ferreira for his expert help with Fig. 6.info:eu-repo/semantics/publishedVersio
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Histological and immunohistochemical features of the spleen in persistent polyclonal B-cell lymphocytosis closely mimic splenic B-cell lymphoma
Persistent polyclonal B-cell lymphocytosis (PPBL) is rare and intriguing hematological disorder predominantly reported in young to middle- aged smoking women. It is characterized by persistent moderate polyclonal B-cell lymphocytosis with circulating hallmark binucleated lymphocytes and elevated polyclonal serum IgM. Most patients have benign clinical course on long-term follow-up. Some pathologic features of PPBL may resemble malignant lymphoma, including morphology as well as frequent cytogenetic and molecular abnormalities. Significant symptomatic splenomegaly requiring splenectomy is very unusual for this disorder; therefore there is a lack of descriptions of the morphologic features of the spleen in the literature. We present here one of the first detailed descriptions of the morphologic and immunohistochemical features of the spleen from a young female with PPBL who developed massive splenomegaly during 6-year follow up. Splenectomy was performed for symptomatic relief and suspicion of malignant process. The morphological and immunohistochemical features of the spleen closely mimicked involvement by B-cell lymphoma, however there was no monotypic surface light chain restriction seen by flow cytometry and no clonal rearrangement of IgH gene was detected by molecular analysis. Evaluating a splenectomy sample in cases like this may present a diagnostic challenge to pathologists. Therefore, correlation with B cell clonality studies (by flow cytometry and molecular analysis), clinical findings and peripheral blood morphology searching for characteristic binucleated lymphocytes is essential to avoid misdiagnosing this benign process as B-cell lymphoma. We also present here a literature review on pathogenesis of PPBL
- …
