52 research outputs found

    Spin-orbit density wave induced hidden topological order in URu2Si2

    Full text link
    The conventional order parameters in quantum matters are often characterized by 'spontaneous' broken symmetries. However, sometimes the broken symmetries may blend with the invariant symmetries to lead to mysterious emergent phases. The heavy fermion metal URu2Si2 is one such example, where the order parameter responsible for a second-order phase transition at Th = 17.5 K has remained a long-standing mystery. Here we propose via ab-initio calculation and effective model that a novel spin-orbit density wave in the f-states is responsible for the hidden-order phase in URu2Si2. The staggered spin-orbit order 'spontaneous' breaks rotational, and translational symmetries while time-reversal symmetry remains intact. Thus it is immune to pressure, but can be destroyed by magnetic field even at T = 0 K, that means at a quantum critical point. We compute topological index of the order parameter to show that the hidden order is topologically invariant. Finally, some verifiable predictions are presented.Comment: (v2) Substantially modified from v1, more calculation and comparison with experiments are include

    A Gammaherpesvirus Complement Regulatory Protein Promotes Initiation of Infection by Activation of Protein Kinase Akt/PKB

    Get PDF
    BACKGROUND: Viruses have evolved to evade the host's complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation. CONCLUSIONS/SIGNIFICANCE: In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein

    Neuroarchitecture of Aminergic Systems in the Larval Ventral Ganglion of Drosophila melanogaster

    Get PDF
    Biogenic amines are important signaling molecules in the central nervous system of both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, biogenic amines take part in the regulation of various vital physiological processes such as feeding, learning/memory, locomotion, sexual behavior, and sleep/arousal. Consequently, several morphological studies have analyzed the distribution of aminergic neurons in the CNS. Previous descriptions, however, did not determine the exact spatial location of aminergic neurite arborizations within the neuropil. The release sites and pre-/postsynaptic compartments of aminergic neurons also remained largely unidentified. We here used gal4-driven marker gene expression and immunocytochemistry to map presumed serotonergic (5-HT), dopaminergic, and tyraminergic/octopaminergic neurons in the thoracic and abdominal neuromeres of the Drosophila larval ventral ganglion relying on Fasciclin2-immunoreactive tracts as three-dimensional landmarks. With tyrosine hydroxylase- (TH) or tyrosine decarboxylase 2 (TDC2)-specific gal4-drivers, we also analyzed the distribution of ectopically expressed neuronal compartment markers in presumptive dopaminergic TH and tyraminergic/octopaminergic TDC2 neurons, respectively. Our results suggest that thoracic and abdominal 5-HT and TH neurons are exclusively interneurons whereas most TDC2 neurons are efferent. 5-HT and TH neurons are ideally positioned to integrate sensory information and to modulate neuronal transmission within the ventral ganglion, while most TDC2 neurons appear to act peripherally. In contrast to 5-HT neurons, TH and TDC2 neurons each comprise morphologically different neuron subsets with separated in- and output compartments in specific neuropil regions. The three-dimensional mapping of aminergic neurons now facilitates the identification of neuronal network contacts and co-localized signaling molecules, as exemplified for DOPA decarboxylase-synthesizing neurons that co-express crustacean cardioactive peptide and myoinhibiting peptides

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore