127 research outputs found
Immune enhancement by novel vaccine adjuvants in autoimmune-prone NZB/W F1 mice: relative efficacy and safety
<p>Abstract</p> <p>Background</p> <p>Vaccines have profoundly impacted global health although concerns persist about their potential role in autoimmune or other adverse reactions. To address these concerns, vaccine components like immunogens and adjuvants require critical evaluation not only in healthy subjects but also in those genetically averse to vaccine constituents. Evaluation in autoimmune-prone animal models of adjuvants is therefore important in vaccine development. The objective here was to assess the effectiveness of experimental adjuvants: two phytol-derived immunostimulants PHIS-01 (phytanol) and PHIS-03 (phytanyl mannose), and a new commercial adjuvant from porcine small intestinal submucosa (SIS-H), relative to a standard adjuvant alum. Phytol derivatives are hydrophobic, oil-in water diterpenoids, while alum is hydrophilic, and SIS is essentially a biodegradable and collagenous protein cocktail derived from extracellular matrices.</p> <p>Results</p> <p>We studied phthalate -specific and cross-reactive anti-DNA antibody responses, and parameters associated with the onset of autoimmune disorders. We determined antibody isotype and cytokine/chemokine milieu induced by the above experimental adjuvants relative to alum. Our results indicated that the phytol-derived adjuvant PHIS-01 exceeded alum in enhancing anti-phthalate antibody without much cross reactivity with ds-DNA. Relatively, SIS and PHIS-03 proved less robust, but they were also less inflammatory. Interestingly, these adjuvants facilitated isotype switching of anti-hapten, but not of anti-DNA response. The current study reaffirms our earlier reports on adjuvanticity of phytol compounds and SIS-H in non autoimmune-prone BALB/c and C57BL/6 mice. These adjuvants are as effective as alum also in autoimmune-prone NZB/WF1 mice, and they have little deleterious effects.</p> <p>Conclusion</p> <p>Although all adjuvants tested impacted cytokine/chemokine milieu in favor of Th1/Th2 balance, the phytol compounds fared better in reducing the onset of autoimmune syndromes. However, SIS is least inflammatory among the adjuvants evaluated.</p
A Novel Role for CD55 in Granulocyte Homeostasis and Anti-Bacterial Host Defense
Background: In addition to its complement-regulating activity, CD55 is a ligand of the adhesion class G protein-coupled receptor CD97; however, the relevance of this interaction has remained elusive. We previously showed that mice lacking a functional CD97 gene have increased numbers of granulocytes. Methodology/Results: Here,wedemonstratethatCD55-deficientmicedisplay a comparable phenotype with about two-fold more circulating granulocytes in the blood stream, the marginated pool, and the spleen. This granulocytosis was independent of increased complement activity. Augmented numbers of Gr-1-positive cells in cell cycle in the bone marrow indicated a higher granulopoietic activity in mice lacking either CD55 or CD97. Concomitant with the increase in blood granulocyte numbers, Cd55-/mice challenged with the respiratory pathogen Streptococcus pneumoniae developed less bacteremia and died later after infection. Conclusions: Collectively, these data suggest that complement-independent interaction of CD55 with CD97 is functionall
A Common Cortical Circuit Mechanism for Perceptual Categorical Discrimination and Veridical Judgment
Perception involves two types of decisions about the sensory world:
identification of stimulus features as analog quantities, or discrimination of
the same stimulus features among a set of discrete alternatives. Veridical
judgment and categorical discrimination have traditionally been conceptualized
as two distinct computational problems. Here, we found that these two types of
decision making can be subserved by a shared cortical circuit mechanism. We used
a continuous recurrent network model to simulate two monkey experiments in which
subjects were required to make either a two-alternative forced choice or a
veridical judgment about the direction of random-dot motion. The model network
is endowed with a continuum of bell-shaped population activity patterns, each
representing a possible motion direction. Slow recurrent excitation underlies
accumulation of sensory evidence, and its interplay with strong recurrent
inhibition leads to decision behaviors. The model reproduced the
monkey's performance as well as single-neuron activity in the
categorical discrimination task. Furthermore, we examined how direction
identification is determined by a combination of sensory stimulation and
microstimulation. Using a population-vector measure, we found that direction
judgments instantiate winner-take-all (with the population vector coinciding
with either the coherent motion direction or the electrically elicited motion
direction) when two stimuli are far apart, or vector averaging (with the
population vector falling between the two directions) when two stimuli are close
to each other. Interestingly, for a broad range of intermediate angular
distances between the two stimuli, the network displays a mixed strategy in the
sense that direction estimates are stochastically produced by winner-take-all on
some trials and by vector averaging on the other trials, a model prediction that
is experimentally testable. This work thus lends support to a common
neurodynamic framework for both veridical judgment and categorical
discrimination in perceptual decision making
Detailed Kinetics of the Direct Allo-Response in Human Liver Transplant Recipients: New Insights from an Optimized Assay
Conventional assays for quantification of allo-reactive T-cell precursor frequencies (PF) are relatively insensitive. We present a robust assay for quantification of PF of T-cells with direct donor-specificity, and establish the kinetics of circulating donor-specific T cells after liver transplantation (LTx). B cells from donor splenocytes were differentiated into professional antigen-presenting cells by CD40-engagement (CD40-B cells). CFSE-labelled PBMC from LTx-recipients obtained before and at several time points after LTx, were stimulated with donor-derived or 3rd party CD40-B cells. PF of donor-specific T cells were calculated from CFSE-dilution patterns, and intracellular IFN-Îł was determined after re-stimulation with CD40-B cells. Compared to splenocytes, stimulations with CD40-B cells resulted in 3 to 5-fold higher responding T-cell PF. Memory and naĂŻve T-cell subsets responded equally to allogeneic CD40-B cell stimulation. Donor-specific CD4+ and CD8+ T-cell PF ranged from 0.5 to 19% (median: 5.2%). One week after LTx, PF of circulating donor-specific CD4+ and CD8+ T cells increased significantly, while only a minor increase in numbers of T cells reacting to 3rd party allo-antigens was observed. One year after LTx numbers of CD4+ and CD8+ T cells reacting to donor antigens, as well as those reacting to 3rd party allo-antigens, were slightly lower compared to pre-transplant values. Moreover, CD4+ and CD8+ T cells responding to donor-derived, as well as those reacting to 3rd party CD40-B cells, produced less IFN-Îł. In conclusion, our alternative approach enables detection of allo-reactive human T cells at high frequencies, and after application we conclude that donor-specific T-cell PF increase immediately after LTx. However, no evidence for a specific loss of circulating T-cells recognizing donor allo-antigens via the direct pathway up to 1 year after LTx was obtained, underscoring the relative insensitiveness of previous assays
A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis
Complement activation in myasthenia gravis (MG) may damage muscle endplate and complement regulatory proteins such as decay-accelerating factor (DAF) or CD55 may be protective. We hypothesize that the increased prevalence of severe extraocular muscle (EOM) dysfunction among African MG subjects reported earlier may result from altered DAF expression. To test this hypothesis, we screened the DAF gene sequences relevant to the classical complement pathway and found an association between myasthenics with EOM paresis and the DAF regulatory region c.-198C>G SNP (odds ratio=8.6; P=0.0003). This single nucleotide polymorphism (SNP) results in a twofold activation of a DAF 5âČ-flanking region luciferase reporter transfected into three different cell lines. Direct matching of the surrounding SNP sequence within the DAF regulatory region with the known transcription factor-binding sites suggests a loss of an Sp1-binding site. This was supported by the observation that the c.-198C>G SNP did not show the normal lipopolysaccharide-induced DAF transcriptional upregulation in lymphoblasts from four patients. Our findings suggest that at critical periods during autoimmune MG, this SNP may result in inadequate DAF upregulation with consequent complement-mediated EOM damage. Susceptible individuals may benefit from anti-complement therapy in addition to immunosuppression
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6Â Ă Â 6Â Ă Â 6Â m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7Â m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation
- âŠ