218 research outputs found

    Fusion of vaccinia virus particles with single cells - A kinetic study facilitated by microfluidic technology

    Get PDF
    We developed a microfluidic device that allows, for the first time, the kinetic investigation of the fusion of single vaccinia virions (VACVs) with single cells initiated by a fast low-pH trigger

    A simple, high-throughput, colourimetric, field applicable loop-mediated isothermal amplification (HtLAMP) assay for malaria elimination.

    Get PDF
    BACKGROUND: To detect all malaria infections in elimination settings sensitive, high throughput and field deployable diagnostic tools are required. Loop-mediated isothermal amplification (LAMP) represents a possible field-applicable molecular diagnostic tool. However, current LAMP platforms are limited by their capacity for high throughput. METHODS: A high-throughput LAMP (HtLAMP) platform amplifying mitochondrial targets using a 96-well microtitre plate platform, processing 85 samples and 11 controls, using hydroxynaphtholblue as a colourimetric indicator was optimized for the detection of malaria parasites. Objective confirmation of visually detectable colour change results was made using a spectrophotometer. A dilution series of laboratory-cultured 3D7 Plasmodium falciparum parasites was used to determine the limit of detection of the HtLAMP assay, using P. falciparum (HtLAMP-Pf) and Plasmodium genus (HtLAMP-Pg) primers, on whole blood and filter paper, and using different DNA extraction protocols. The diagnostic accuracy of HtLAMP was validated using clinical samples from Papua New Guinea, Malaysia, Ghana and The Gambia and its field applicability was evaluated in Kota Marudu district hospital, Sabah, Malaysia. RESULTS: The HtLAMP assay proved to be a simple method generating a visually-detectable blue and purple colour change that could be objectively confirmed in a spectrophotometer at a wavelength of 600 nm. When compared with PCR, overall HtLAMP-Pg had a sensitivity of 98 % (n = 260/266, 95 % CI 95-99) and specificity 83 % (n = 15/18, 95 % CI 59-96). HtLAMP-Pf had a sensitivity of 97 % (n = 124/128, 95 % CI 92-99) and specificity of 96 % (n = 151/157, 95 % CI 92-99). A validation study in a regional hospital laboratory demonstrated ease of performance and interpretation of the HtLAMP assay. HtLAMP-Pf performed in this field setting had a sensitivity of 100 % (n = 17/17, 95 % CI 80-100) and specificity of 95 % (n = 123/128, 95 % CI 90-98) compared with multiplex PCR. HtLAMP-Pf also performed well on filter paper samples from asymptomatic Ghanaian children with a sensitivity of 88 % (n = 23/25, 95 % CI 69-97). CONCLUSION: This colourimetric HtLAMP assay holds much promise as a field applicable molecular diagnostic tool for the purpose of malaria elimination

    The Inflammatory Kinase MAP4K4 Promotes Reactivation of Kaposi's Sarcoma Herpesvirus and Enhances the Invasiveness of Infected Endothelial Cells

    Get PDF
    Kaposi's sarcoma (KS) is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV) and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells. © 2013 Haas et al

    Microfluidic cell sorter with integrated piezoelectric actuator

    Get PDF
    We demonstrate a low-power (<0.1 mW), low-voltage (<10 Vp-p) on-chip piezoelectrically actuated micro-sorter that can deflect single particles and cells at high-speed. With rhodamine in the stream, switching of flow between channels can be visualized at high actuation frequency (~1.7 kHz). The magnitude of the cell deflection can be precisely controlled by the magnitude and waveform of input voltage. Both simulation and experimental results indicate that the drag force imposed on the suspended particle/cell by the instantaneous fluid displacement can alter the trajectory of the particle/cell of any size, shape, and density of interest in a controlled manner. The open-loop E. Coli cell deflection experiment demonstrates that the sorting mechanism can produce a throughput of at least 330 cells/s, with a promise of a significantly higher throughput for an optimized design. To achieve close-loop sorting operation, fluorescence detection, real-time signal processing, and field-programmable-gate-array (FPGA) implementation of the control algorithms were developed to perform automated sorting of fluorescent beads. The preliminary results show error-free sorting at a sorting efficiency of ~70%. Since the piezoelectric actuator has an intrinsic response time of 0.1–1 ms and the sorting can be performed under high flowrate (particle speed of ~1–10 cm/s), the system can achieve a throughput of >1,000 particles/s with high purity

    LEM-3 – A LEM Domain Containing Nuclease Involved in the DNA Damage Response in C. elegans

    Get PDF
    The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen. LEM-3 contains a LEM domain and a GIY nuclease domain. We confirm that LEM-3 has DNase activity in vitro. lem-3(lf) mutants are hypersensitive to various types of DNA damage, including ionizing radiation, UV-C light and crosslinking agents. Embryos from irradiated lem-3 hermaphrodites displayed severe defects during cell division, including chromosome mis-segregation and anaphase bridges. The mitotic defects observed in irradiated lem-3 mutant embryos are similar to those found in baf-1 (barrier-to-autointegration factor) mutants. The baf-1 gene codes for an essential and highly conserved protein known to interact with the other two C. elegans LEM domain proteins, LEM-2 and EMR-1. We show that baf-1, lem-2, and emr-1 mutants are also hypersensitive to DNA damage and that loss of lem-3 sensitizes baf-1 mutants even in the absence of DNA damage. Our data suggest that BAF-1, together with the LEM domain proteins, plays an important role following DNA damage – possibly by promoting the reorganization of damaged chromatin

    mKikGR, a Monomeric Photoswitchable Fluorescent Protein

    Get PDF
    The recent demonstration and utilization of fluorescent proteins whose fluorescence can be switched on and off has greatly expanded the toolkit of molecular and cell biology. These photoswitchable proteins have facilitated the characterization of specifically tagged molecular species in the cell and have enabled fluorescence imaging of intracellular structures with a resolution far below the classical diffraction limit of light. Applications are limited, however, by the fast photobleaching, slow photoswitching, and oligomerization typical for photoswitchable proteins currently available. Here, we report the molecular cloning and spectroscopic characterization of mKikGR, a monomeric version of the previously reported KikGR that displays high photostability and switching rates. Furthermore, we present single-molecule imaging experiments that demonstrate that individual mKikGR proteins can be localized with a precision of better than 10 nanometers, suggesting their suitability for super-resolution imaging

    Fabrication of Functionalized Double-Lamellar Multifunctional Envelope-Type Nanodevices Using a Microfluidic Chip with a Chaotic Mixer Array

    Get PDF
    Multifunctional envelope-type nanodevices (MENDs) are very promising non-viral gene delivery vectors because they are biocompatible and enable programmed packaging of various functional elements into an individual nanostructured liposome. Conventionally MENDs have been fabricated by complicated, labor-intensive, time-consuming bulk batch methods. To avoid these problems in MEND fabrication, we adopted a microfluidic chip with a chaotic mixer array on the floor of its reaction channel. The array was composed of 69 cycles of the staggered chaotic mixer with bas-relief structures. Although the reaction channel had very large Péclet numbers (>105) favorable for laminar flows, its chaotic mixer array led to very small mixing lengths (<1.5 cm) and that allowed homogeneous mixing of MEND precursors in a short time. Using the microfluidic chip, we fabricated a double-lamellar MEND (D-MEND) composed of a condensed plasmid DNA core and a lipid bilayer membrane envelope as well as the D-MEND modified with trans-membrane peptide octaarginine. Our lab-on-a-chip approach was much simpler, faster, and more convenient for fabricating the MENDs, as compared with the conventional bulk batch approaches. Further, the physical properties of the on-chip-fabricated MENDs were comparable to or better than those of the bulk batch-fabricated MENDs. Our fabrication strategy using microfluidic chips with short mixing length reaction channels may provide practical ways for constructing more elegant liposome-based non-viral vectors that can effectively penetrate all membranes in cells and lead to high gene transfection efficiency

    High-Density Microwell Chip for Culture and Analysis of Stem Cells

    Get PDF
    With recent findings on the role of reprogramming factors on stem cells, in vitro screening assays for studying (de)-differentiation is of great interest. We developed a miniaturized stem cell screening chip that is easily accessible and provides means of rapidly studying thousands of individual stem/progenitor cell samples, using low reagent volumes. For example, screening of 700,000 substances would take less than two days, using this platform combined with a conventional bio-imaging system. The microwell chip has standard slide format and consists of 672 wells in total. Each well holds 500 nl, a volume small enough to drastically decrease reagent costs but large enough to allow utilization of standard laboratory equipment. Results presented here include weeklong culturing and differentiation assays of mouse embryonic stem cells, mouse adult neural stem cells, and human embryonic stem cells. The possibility to either maintain the cells as stem/progenitor cells or to study cell differentiation of stem/progenitor cells over time is demonstrated. Clonality is critical for stem cell research, and was accomplished in the microwell chips by isolation and clonal analysis of single mouse embryonic stem cells using flow cytometric cell-sorting. Protocols for practical handling of the microwell chips are presented, describing a rapid and user-friendly method for the simultaneous study of thousands of stem cell cultures in small microwells. This microwell chip has high potential for a wide range of applications, for example directed differentiation assays and screening of reprogramming factors, opening up considerable opportunities in the stem cell field

    Determinants of Leukocyte Margination in Rectangular Microchannels

    Get PDF
    Microfabrication of polydimethylsiloxane (PDMS) devices has provided a new set of tools for studying fluid dynamics of blood at the scale of real microvessels. However, we are only starting to understand the power and limitations of this technology. To determine the applicability of PDMS microchannels for blood flow analysis, we studied white blood cell (WBC) margination in channels of various geometries and blood compositions. We found that WBCs prefer to marginate downstream of sudden expansions, and that red blood cell (RBC) aggregation facilitates the process. In contrast to tubes, WBC margination was restricted to the sidewalls in our low aspect ratio, pseudo-2D rectangular channels and consequently, margination efficiencies of more than 95% were achieved in a variety of channel geometries. In these pseudo-2D channels blood rheology and cell integrity were preserved over a range of flow rates, with the upper range limited by the shear in the vertical direction. We conclude that, with certain limitations, rectangular PDMS microfluidic channels are useful tools for quantitative studies of blood rheology
    corecore