197 research outputs found

    Accuracy of the LEP Spectrometer Beam Orbit Monitors

    Get PDF
    At the LEP e+/e- collider, a spectrometer is used to determine the beam energy with a target accuracy of 10-4. The spectrometer measures the lattice dipole bending angle of the beam using six beam position monitors (BPMs). The required calibration error imposes a BPM accuracy of a 10-6 m corresponding to a relative electrical signal variation of 2. 10-5. The operating parameters have been compared with beam simulator results and non-linearBPM response simulations. The relative beam current variations between 0.02 and 0.03 and position changes of 0.1 mm during the fills of last year lead to uncertainties in the orbit measurements of well below 10-6 m. For accuracy tests absolute beam currents were varied by a factor of three. The environment magnetical field is introduced to correct orbit readings. The BPM linearity and calibration was checked using moveable supports and wire position sensors. The BPM triplet quantity is used to determine the orbit position monitors accuracy. The BPM triplet changed during the fills between 1 and 2 10-6 m RMS, which indicates a single BPM orbit determination accuracy between 1 and 1.5 10-6 m

    Performance of BPM Electronics for the LEP Spectrometer

    Get PDF
    At the LEP e+/e- collider at CERN, Geneva, a Spectrometer is used to determine the beam energy with a relative accuracy of 10-4. The Spectrometer measures the change in bending angle in a well-characterised dipole magnet as LEP is ramped. The beam trajectory is obtained using three beam position monitors (BPMs) on each side of the magnet. The error on each BPM measurement should not exceed 1 micron if the desired accuracy on the bending angle is to be reached. The BPMs used consist of an aluminium block with an elliptical aperture and four capacitive button pickup electrodes. The button signals are fed to customised electronics supplied by Bergoz. The electronics use time multiplexing of individual button signals through a single processing chain to optimise for long-term stability. We report on our experience of the performance of these electronics, describing measurements made with test signals and with beam. We have implemented a beam-based calibration procedure and have monitored the reproducibility of the measurements obtained over time. Measurements show that a relative accuracy better than 300 nm is achievable over a period of 1 hr

    Calibration of centre-of-mass energies at LEP 2 for a precise measurement of the W boson mass

    Full text link
    The determination of the centre-of-mass energies for all LEP 2 running is presented. Accurate knowledge of these energies is of primary importance to set the absolute energy scale for the measurement of the W boson mass. The beam energy between 80 and 104 GeV is derived from continuous measurements of the magnetic bending field by 16 NMR probes situated in a number of the LEP dipoles. The relationship between the fields measured by the probes and the beam energy is defined in the NMR model, which is calibrated against precise measurements of the average beam energy between 41 and 61 GeV made using the resonant depolarisation technique. The validity of the NMR model is verified by three independent methods: the flux-loop, which is sensitive to the bending field of all the dipoles of LEP; the spectrometer, which determines the energy through measurements of the deflection of the beam in a magnet of known integrated field; and an analysis of the variation of the synchrotron tune with the total RF voltage. To obtain the centre-of-mass energies, corrections are then applied to account for sources of bending field external to the dipoles, and variations in the local beam energy at each interaction point. The relative error on the centre-of-mass energy determination for the majority of LEP 2 running is 1.2 x 10^{-4}, which is sufficiently precise so as not to introduce a dominant uncertainty on the W mass measurement.Comment: 79 pages, 45 figures, submitted to EPJ

    Determination of the Accuracy of Wire Position Sensors

    Get PDF
    An energy spectrometer has been installed in the LEP accelerator to determine the beam energy with a relative accuracy of 10-4. A precisely calibrated bending magnet is flanked by 6 beam position monitors (BPM). The beam energy is determined by measuring the deflection angle of the LEP beams and the integrated bending field. An accuracy of less than 10-6 m on the beam position is necessary to reach the desired accuracy on the LEP beam energy. Capacitive wire positioning sensors are used to determine the relative mounting stability of each BPM and to calibrate the beam position monitors. Two-dimensional sensors are attached to each side of every BPM support and provide a position measurement with respect to two stretched wires mounted on either side of the LEP beam pipe. The fixing points of each wire are monitored by additional reference sensors. The position information is digitised via a multiplexed high accuracy digital voltmeter and read out continuously during LEP operations. Wire position sensor accuracy was tested in the laboratory with a laser interferometer, while relative accuracy tests are performed in the LEP environment. Systematic effects of synchrotron radiation on the wire position sensor performance were studied

    Status of the LEP2 Spectrometer Project

    Get PDF
    The LEP spectrometer has been conceived to provide a determination of the beam energy with a relative accuracy of 10-4 in the LEP2 physics region where insufficient polarisation levels prevent the application of the resonant depolarisation method. The setup consists of a steel bending magnet flanked by a triplet of Beam Position Monitors (BPM) at each side providing a measurement of changes in the bending angle when the beams are accelerated to physics energies. The goal for a 100 ppm relative precision on the beam energy involves a ± 1 micron BPM resolution and the calibration of the dipole bending strength to a 30 ppm accuracy. This paper reports on the results of the commissioning of the Spectrometer during the 1999 LEP Run and on the experience acquired on the behaviour of the several sub-systems with circulating beams

    Novel biomaterials: plasma-enabled nanostructures and functions

    Get PDF
    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials

    Prophage Spontaneous Activation Promotes DNA Release Enhancing Biofilm Formation in Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population

    Comparison of proteomic responses as global approach to antibiotic mechanism of action elucidation

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology
    • …
    corecore