1,395 research outputs found

    Edge-guided image gap interpolation using multi-scale transformation

    Get PDF
    This paper presents improvements in image gap restoration through the incorporation of edge-based directional interpolation within multi-scale pyramid transforms. Two types of image edges are reconstructed: 1) the local edges or textures, inferred from the gradients of the neighboring pixels and 2) the global edges between image objects or segments, inferred using a Canny detector. Through a process of pyramid transformation and downsampling, the image is progressively transformed into a series of reduced size layers until at the pyramid apex the gap size is one sample. At each layer, an edge skeleton image is extracted for edge-guided interpolation. The process is then reversed; from the apex, at each layer, the missing samples are estimated (an iterative method is used in the last stage of upsampling), up-sampled, and combined with the available samples of the next layer. Discrete cosine transform and a family of discrete wavelet transforms are utilized as alternatives for pyramid construction. Evaluations over a range of images, in regular and random loss pattern, at loss rates of up to 40%, demonstrate that the proposed method improves peak-signal-to-noise-ratio by 1–5 dB compared with a range of best-published works

    Mars laser altimeter based on a single photon ranging technique

    Get PDF
    The Mars 94/96 Mission will carry, among others things, the balloon probe experiment. The balloon with the scientific cargo in the gondola underneath will drift in the Mars atmosphere, its altitude will range from zero, in the night, up to 5 km at noon. The accurate gondola altitude will be determined by an altimeter. As the Balloon gondola mass is strictly limited, the altimeter total mass and power consumption are critical; maximum allowed is a few hundred grams a few tens of mWatts of average power consumption. We did propose, design, and construct the laser altimeter based on the single photon ranging technique. Topics covered include the following: principle of operation, altimeter construction, and ground tests

    Submicron silicon powder production in an aerosol reactor

    Get PDF
    Powder synthesis by thermally induced vapor phase reactions is described. The powder generated by this technique consists of spherical, nonagglomerated particles of high purity. The particles are uniform in size, in the 0.1–0.2 µm size range. Most of the particles are crystalline spheres. A small fraction of the spheres are amorphous. Chain agglomerates account for less than 1% of the spherules

    On the three-dimensional temporal spectrum of stretched vortices

    Full text link
    The three-dimensional stability problem of a stretched stationary vortex is addressed in this letter. More specifically, we prove that the discrete part of the temporal spectrum is only associated with two-dimensional perturbations.Comment: 4 pages, RevTeX, submitted to PR

    In-beam test of the TwinTPC at FRS

    Get PDF

    Possibility of Measuring the Width of Narrow Fe II Astrophysical Laser Lines in the Vicinity of Eta Carinae by means of Brown-Twiss-Townes Heterodyne Correlation Interferometry

    Full text link
    We consider the possibility of measuring the true width of the narrow Fe II optical lines observed in spectra of the Weigelt blobs in the vicinity of Eta Carinae. The lines originate as a result of stimulated amplification of spontaneous emission of radiation in quantum transitions between energy levels showing inverted population (Johansson & Letokhov, 2002, 2003, 2004). The lines should have a subDoppler spectral width of 30-100 MHz, depending on the geometry of the lasing volume. To make measurements with a spectral resolution of R>10^7 and an angular resolution better than 0.1 arcsec, we suggest the use of the Brown-Twiss-Townes optical heterodyne intensity correlation interferometry. The estimates made of the S/N ratio for the optical heterodyne astrophysical laser experiment imply that it is feasible.Comment: Accepted for publication in New Astronom

    Detection of Voigt Spectral Line Profiles of Hydrogen Radio Recombination Lines toward Sagittarius B2(N)

    Full text link
    We report the detection of Voigt spectral line profiles of radio recombination lines (RRLs) toward Sagittarius B2(N) with the 100-m Green Bank Telescope (GBT). At radio wavelengths, astronomical spectra are highly populated with RRLs, which serve as ideal probes of the physical conditions in molecular cloud complexes. An analysis of the Hn(alpha) lines presented herein shows that RRLs of higher principal quantum number (n>90) are generally divergent from their expected Gaussian profiles and, moreover, are well described by their respective Voigt profiles. This is in agreement with the theory that spectral lines experience pressure broadening as a result of electron collisions at lower radio frequencies. Given the inherent technical difficulties regarding the detection and profiling of true RRL wing spans and shapes, it is crucial that the observing instrumentation produce flat baselines as well as high sensitivity, high resolution data. The GBT has demonstrated its capabilities regarding all of these aspects, and we believe that future observations of RRL emission via the GBT will be crucial towards advancing our knowledge of the larger-scale extended structures of ionized gas in the interstellar medium (ISM)

    Three-dimensional stability of Burgers vortices

    Full text link
    Burgers vortices are explicit stationary solutions of the Navier-Stokes equations which are often used to describe the vortex tubes observed in numerical simulations of three-dimensional turbulence. In this model, the velocity field is a two-dimensional perturbation of a linear straining flow with axial symmetry. The only free parameter is the Reynolds number Re=Γ/νRe = \Gamma/\nu, where Γ\Gamma is the total circulation of the vortex and ν\nu is the kinematic viscosity. The purpose of this paper is to show that Burgers vortex is asymptotically stable with respect to general three-dimensional perturbations, for all values of the Reynolds number. This definitive result subsumes earlier studies by various authors, which were either restricted to small Reynolds numbers or to two-dimensional perturbations. Our proof relies on the crucial observation that the linearized operator at Burgers vortex has a simple and very specific dependence upon the axial variable. This allows to reduce the full linearized equations to a vectorial two-dimensional problem, which can be treated using an extension of the techniques developped in earlier works. Although Burgers vortices are found to be stable for all Reynolds numbers, the proof indicates that perturbations may undergo an important transient amplification if ReRe is large, a phenomenon that was indeed observed in numerical simulations.Comment: 31 pages, no figur

    Evolution of central pattern generators for the control of a five-link bipedal walking mechanism

    Get PDF
    Central pattern generators (CPGs), with a basis is neurophysiological studies, are a type of neural network for the generation of rhythmic motion. While CPGs are being increasingly used in robot control, most applications are hand-tuned for a specific task and it is acknowledged in the field that generic methods and design principles for creating individual networks for a given task are lacking. This study presents an approach where the connectivity and oscillatory parameters of a CPG network are determined by an evolutionary algorithm with fitness evaluations in a realistic simulation with accurate physics. We apply this technique to a five-link planar walking mechanism to demonstrate its feasibility and performance. In addition, to see whether results from simulation can be acceptably transferred to real robot hardware, the best evolved CPG network is also tested on a real mechanism. Our results also confirm that the biologically inspired CPG model is well suited for legged locomotion, since a diverse manifestation of networks have been observed to succeed in fitness simulations during evolution.Comment: 11 pages, 9 figures; substantial revision of content, organization, and quantitative result

    Design of Primary Feeds for 32m KDDI Antenna System IBA-4 in Cassegrain Configuration

    Get PDF
    Physically large dimensional dish antennas in Cassegrain configuration have played an important role in satellite communications during the past several decades. Recently, however, emerging new technologies have begun to displace these elegant antennas in professional telecommunication service due to their lower operating costs. A beneficial aspect of this transitional situation is that it has created opportunities for amateur radio enthusiasts to use these soon-to-be-retired dish antenna systems for limited experimental testing. Adaptation of these professionally designed antennas to bands allocated for amateur radio service presents excellent educational opportunities in using antenna engineering skills and the use of modern electromagnetic simulation software provides a novel perspective for these antenna design and transformation tasks
    corecore