94 research outputs found

    UNDERSTANDING 3D POINT CLOUD DEEP NEURAL NETWORKS BY VISUALIZATION TECHNIQUES

    Get PDF
    Abstract. In the wake of the success of Deep Learning Networks (DLN) for image recognition, object detection, shape classification and semantic segmentation, this approach has proven to be both a major breakthrough and an excellent tool in point cloud classification. However, understanding how different types of DLN achieve still lacks. In several studies the output of segmentation/classification process is compared against benchmarks, but the network is treated as a "black-box" and intermediate steps are not deeply analysed. Specifically, here the following questions are discussed: (1) what exactly did DLN learn from a point cloud? (2) On the basis of what information do DLN make decisions? To conduct such a quantitative investigation of these DLN applied to point clouds, this paper investigates the visual interpretability for the decision-making process. Firstly, we introduce a reconstruction network able to reconstruct and visualise the learned features, in order to face with question (1). Then, we propose 3DCAM to indicate the discriminative point cloud regions used by these networks to identify that category, thus dealing with question (2). Through answering the above two questions, the paper would like to offer some initial solutions to better understand the application of DLN to point clouds

    Towards automatic reconstruction of indoor scenes from incomplete point clouds: door and window detection and regularization

    Get PDF
    In the last years, point clouds have become the main source of information for building modelling. Although a considerable amount of methodologies addressing the automated generation of 3D models from point clouds have been developed, indoor modelling is still a challenging task due to complex building layouts and the high presence of severe clutters and occlusions. Most of methodologies are highly dependent on data quality, often producing irregular and non-consistent models. Although manmade environments generally exhibit some regularities, they are not commonly considered. This paper presents an optimization-based approach for detecting regularities (i.e., same shape, same alignment and same spacing) in building indoor features. The methodology starts from the detection of openings based on a voxel-based visibility analysis to distinguish ‘occluded’ from ‘empty’ regions in wall surfaces. The extraction of regular patterns in windows is addressed from studying the point cloud from an outdoor perspective. The layout is regularized by minimizing deformations while respecting the detected constraints. The methodology applies for elements placed in the same planeXunta de Galicia | Ref. ED481B 2016/079-

    Georeferencing accuracy analysis of a single worldview-3 image collected over Milan

    Get PDF
    The use of rational functions has become a standard for very high-resolution satellite imagery (VHRSI). On the other hand, the overall geolocalization accuracy via direct georeferencing from on board navigation components is much worse than image ground sampling distance (predicted < 3.5 m CE90 for WorldView-3, whereas GSD = 0.31 m for panchromatic images at nadir). This paper presents the georeferencing accuracy results obtained from a single WorldView-3 image processed with a bias compensated RPC camera model. Orientation results for an image collected over Milan are illustrated and discussed for both direct and indirect georeferencing strategies as well as different bias correction parameters estimated from a set of ground control points. Results highlight that the use of a correction based on two shift parameters is optimal for the considered dataset

    Museos virtuales y entorno construido: narrativas y experiencias inmersivas vía centros de geodatos multitemporales

    Get PDF
    [EN] Our built environment is nowadays considered as a dynamic complex, stretching and transforming across space and time, with the interaction of human, social and economic dimensions. It needs to be safeguarded as living places for the future taking into account such complexity. The general aim of this work is to contribute to the comprehension of landscape values, enhancing participation processes by tourists and local communities, considering the built environment as a system: the sum of natural transformation, ancient artefacts stratification and human activities, partially covering the tangible traces, and functioning as a vehicle for the comprehension of intangible values. Multi-temporal, multi-scale and geospatial datasets can play an important role in such knowledge transfer processes by means of narratives and immersive experiences in a multimedia museum approach. In particular, the cartographic heritage, in the form of metric and non-metric maps, can be progressively used as a source of information for innovative narratives. Virtual Museums (VMs)are additional "channels" to disseminate content and to provide knowledge about cultural heritage; they have emerged from the crossbreeding process between museums and digital technologies. Investigating how digital storytelling may support communication and understanding of complex systems, such as the built environment and landscape, it is relevant because cultural awareness may foster the sense of belonging and identity construction of which Europe is thirsty, contributing to the safeguarding of fragile sites. The paper provides useful information for museums that would like to follow this pathway. It retraces the main steps of storytelling production and presents interesting examples of immersive narrative models based on geospatial data and a virtual hub, helping people to retrieve and access information and to recognize places of memory mostly unknown. Moreover, it offers an evaluation of existing tools that can be adopted for this purpose. Eventually, by virtue of the research carried out for the case study of the Virtual Museum of Como Lake Landscape, the paper aims at ascertaining which kind of stories and experiences can be designed, the potential of these tools and possible weaknesses or constraints that deserve future researches.[ES] El entorno construido se considera hoy en día como un complejo dinámico, que se extiende y transforma a través del espacio y el tiempo, con interacción de dimensiones humanas, sociales y económicas. Debe salvaguardarse como lugares donde vivir el futuro teniendo en cuenta tal complejidad. El objetivo general de este trabajo es contribuir a la comprensión de los valores paisajísticos, potenciando los procesos de participación de los turistas y de los autóctonos, considerando el entorno construido como un sistema: suma de la transformación natural, de la estratificación de artefactos antiguos y de actividades humanas, cubriendo parcialmente los rastros tangibles, y vehículo de comprensión de valores intangibles. Los conjuntos de datos multitemporales, a multi-escala y geoespaciales pueden desempeñar un papel importante en dicho proceso de transferencia de conocimiento a través de narrativas y experiencias inmersivas en el enfoque de un museo multimedia. En particular, el patrimonio cartográfico, en forma de mapas métricos y mapas no métricos, puede utilizarse progresivamente como fuente de información para narrativas innovadoras. Los Museos Virtuales (VM) son “canales” adicionales que permiten difundir contenido y proporcionar conocimiento sobre el patrimonio cultural; surgen del proceso de mestizaje entre museos y tecnologías digitales. Investigar cómo la narración digital puede apoyar la comunicación y la comprensión de sistemas complejos, como el entorno construido y el paisaje, es relevante porque la conciencia cultural puede fomentar el sentido de pertenencia y la construcción de identidad de los que Europa tiene sed, contribuyendo a la protección de sitios frágiles. El artículo proporciona información útil para los museos que deseen seguir este camino. Describe los principales pasos que deberían considerarse a la hora de producir narrativas y pone ejemplos interesantes de modelos narrativos inmersivos basados en datos geoespaciales y centros virtuales, que ayudan a las personas a recuperar y acceder a información, y a reconocer lugares desconocidos o vagamente retenidos en la memoria. Además, ofrece una evaluación de las herramientas existentes que se pueden adoptar con este propósito. El objetivo es aclarar, finalmente, en virtud dela investigación desarrollada en el caso de estudio del Museo Virtual del Paisaje del Lago di Como, qué tipo de historias y experiencias se pueden diseñar, el potencial de estas herramientas y las posibles debilidades o limitaciones que merecen futuras investigaciones.We thank Stefano Della Torre (Head of Polimi dABC) as Sc. Responsible of the Advisory within the PORL FESR 2007/2013 ‘Multimedia system for the presentation and participated recognizing of the environmental values of the landscape of the Lake of Como’; and Leoni Marco (Director of the Museum of Como Lake Landscape) for the concession of museum’s data and his support in developing the PhD research of which this paper presents a summary of preliminary findings.The research leading to the results of this paper is partially funded under the ICT Policy Support Programme (ICT PSP) as part of the Competitiveness and Innovation Framework Programme by the European Community (CIP) GA no. 620400.Brumana, R.; Oreni, D.; Caspani, S.; Previtali, M. (2018). Virtual museums and built environment: narratives and immersive experience via multi-temporal geodata hub. Virtual Archaeology Review. 9(19):34-49. https://doi.org/10.4995/var.2018.9918SWORD3449919Bedford, L. (2001). Storytelling: The real work of museums. Curator: the museum journal, Vol. 44, Issue 1, 27-34. doi: 10.1111/j.2151-6952.2001.tb00027.xBarazzetti, L., Brumana, R., Oreni, D., & Roncoroni, F. (2013). Recognizing landscapes: can we change the point of view of geographic data? Journal of Mobile Multimedia, Vol. 9(1-2), 39-52. doi: 10.1111/j.2151-6952.2001.tb00027.xBarazzetti, L., Brumana, R., Oreni, D., & Previtali, M. (2014). Historical Map Registration via Independent Model Adjustment with Affine Transformations. In ICCSA 2014 (pp. 44-56). doi: 10.1007/978-3-319-09147-1_4Barazzetti L., Brumana, R., Cuca, B., & Previtali, M. (2015). Towards a Virtual Hub for a wider Open Data community. In Geomatics Workbooks n° 12, "FOSS4G Europe Como 2015" (pp.1-12).Brumana, R., Cuca, B., Oreni, D., Prandi, F., & Scaioni, M. (2010). Integration of old cadastral maps into up-to-date geodatabases for urban planning. In Core spatial databases - updating maintenance and services. From theory to practice (pp. 90-95). Haifa, Israel.Brumana, R., Oreni, D., Cuca, B., Rampini, A., & Pepe, M. (2012). Open Access to Historical Atlas: Sources of Information and Services for Landscape Analysis in an SDI Framework. In ICCSA 2012 (pp. 397-413). Springer Int. Publishing. doi: 10.1007/978-3-642-31075-1_30.Brumana, R., Oreni, D., Van Hecke, L., Barazzetti, L., Previtali, M., Roncoroni, F., & Valente, R. (2013). Combined Geometric and Thermal Analysis from Uav Platforms for Archaeological Heritage Documentation. In XXIV International Cipa Symposium (pp. 49-54). Strasbourg, France.Brumana, R., Santana Quintero, M., Barazzetti, L., Previtali, M., Della Torre, S., Roels, D., & Capitani, M. (2015). A geo-swot chart, using a values centered approach and multitemporal-maps for landscape assessment and multimedia ecomuseum. In ICOMOS International Symposium "Heritage and Landscape as Human Values, Theme 1 "Sharing and experiencing the identity of communities through tourism and interpretation" (pp. 186-191). Florence, Italy.Bedford, L. (2001). Storytelling: The real work of museums. Curator: the Museum Journal, 44(1), 27-34.https://doi.org/10.1111/j.2151-6952.2001.tb00027.xBarazzetti, L., Brumana, R., Oreni, D., & Roncoroni, F. (2013). Recognizing landscapes: can we change the point of view of geographic data? Journal of Mobile Multimedia, 9(1-2), 39-52.Barazzetti, L., Brumana, R., Oreni, D., & Previtali, M. (2014). Historical Map Registration via Independent Model Adjustment with Affine Transformations. In ICCSA 2014 (pp. 44-56). Guimaraes, Portugal. https://doi.org/10.1007/978-3-319-09147-1_4Barazzetti, L., Brumana, R., Cuca, B., & Previtali, M. (2015). Towards a Virtual Hub for a wider Open Data community. In FOSS4G Europe 2015(pp.1-12). Como, Italy.Brumana, R., Cuca, B., Oreni, D., Prandi, F., & Scaioni, M. (2010). Integration of old cadastral maps into up-to-date geodatabases for urban planning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII, 4-8-2/W9, 90-95.Brumana, R., Oreni, D., Cuca, B., Rampini, A., &Pepe, M. (2012). Open Access to Historical Atlas: Sources of Information and Services for Landscape Analysis in an SDI Framework .In ICCSA 2012(pp. 397-413).Salvador de Bahia, Brazil. https://doi.org/10.1007/978-3-642-31075-1_30Brumana, R., Oreni, D., Van Hecke, L., Barazzetti, L., Previtali, M., Roncoroni, F., & Valente, R. (2013). Combined geometric and thermal analysis from UAV platforms for archaeological heritage documentation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Science, II-5/W1, 49-54. https://doi.org/10.5194/isprsannals-II-5-W1-49-2013Brumana, R., Santana Quintero, M., Barazzetti, L., Previtali, M., Della Torre, S., Roels, D., & Capitani, M. (2015a). A geo-swot chart, using a values centered approach and multi temporal-maps for landscape assessment and multimedia ecomuseum. In ICOMOS International Symposium "Heritage and Landscape as Human Values", Theme 1"Sharing and experiencing the identity of communities through tourism and interpretation" (pp. 186-191). Florence, Italy.Brumana, R., Santana Quintero, M., Barazzetti, L., Previtali, M., Banfi, F., Oreni, D., Roels D., & Roncoroni, F. (2015b). Towards a virtual hub approach for landscape assessment and multimedia ecomuseum using multi temporal-maps. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7, 49-56. https://doi.org/10.5194/isprsarchives-XL-5-W7-49-2015Bruner, J. (1991). The Narrative Construction of Reality. Critical Inquiry, 18 (1), 1-21. https://doi.org/10.1086/448619Caquard, S. (2013). Mapping narrative cartography. Progress in Human Geography, 37(1), 135-144.https://doi.org/10.1177/0309132511423796Caspani, S., Brumana, R., Oreni, D., Previtali, M. (2017). Virtual museums as digital storytellers for dissemination of built environment: possible narratives and outlooks for appealing and rich encounters with the past. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 113-119.https://doi.org/10.5194/isprs-archives-XLII-2-W5-113-2017Castells, M. (2000). The construction of European Identity. Retrieved October25, 2017, fromhttps://www.chet.org.za/files/CASTELLS%202004%20European%20Identity.pdfCouncil of Europe. (2000). European Landscape Convention. Retrieved October25, 2017, from https://rm.coe.int/1680080621Cuca, B., Brumana, R., Scaioni, M., & Oreni, D. (2011). Spatial Data Management of Temporal Map Series for Cultural and Environmental Heritage. International Journal of Spatial Data Infrastructures Research, 6, 97-125.https.//doi.org/10.2902/1725-0463.2011.06.art5Cuca, B., Previtali, M., Barazzetti, L., & Brumana, R. (2017). Benefits of using Open Geo-spatial Data for valorization of Cultural Heritage: GeoPan app. In 19th EGU General Assembly (p. 19101). Wien, Austria. Retrieved June 20, 2018, from https://meetingorganizer.copernicus.org/EGU2017/EGU2017-19101.pdfGiaccardi, E., & Fogli, D. (2008). Affective geographies: toward a richer cartographic semantics for the geospatial web. In AVI 8 Proceedings of the working conference on Advanced visual interfaces (pp. 173-180). Napoli, Italy. https://doi.org/10.1145/1385569.1385598Hooper-Greenhill, E. (2005). I musei e la formazione del sapere: le radici storiche, le pratiche del presente. Milan: Il Saggiatore.ICOMOS. (1996). The Declaration of San Antonio. Retrieved April 1, 2018, from https://www.icomos.org/en/charters-and-texts/179-articles-en-francais/ressources/charters-and-standards/188-the-declaration-of-san-antonioICOMOS. (2008a). Charter on cultural routes. Retrieved April 1, 2018, from https://www.icomos.org/images/DOCUMENTS/Charters/culturalroutes_e.pdfICOMOS. (2008b). Quebèc Declaration on the preservation of the spirit of place. Retrieved April 1, 2018, from https://www.icomos.org/quebec2008/quebec_declaration/pdf/GA16_Quebec_Declaration_Final_EN.pdfICOMOS. (2014). The Florence Declaration on Heritage and Landscapes as Human Values. Retrieved April 1, 2018, from https://www.icomos.org/images/DOCUMENTS/Secretariat/2015/GA_2014_results/GA2014_Symposium_FlorenceDeclaration_EN_final_20150318.pdfMacdonald, S. (2013) .Memorylands: Heritage and Identity in Europe Today. London: Routledge.Monti, C., Achille, C., Brumana, R., Musumeci, S., Oreni, D., & Signori, M. (2009). Perspectives on the 3-D analysis through the cadastral map series (XVIII -XX sec.) and the first geodetic large scale map of Milan realized by the 'Astronomidi Brera' (Astronomers of Brera): toward an advanced portal. E-PERIMETRON, 4(2), 86-100.Nativi, S., Craglia, M., & Pearlman, J. (2013). Earth science infrastructures interoperability: the brokering approach. IEEE Journal of Selected Topics. Applied Earth Observations and Remote Sensing, 6(3), 1118-1129. https://doi.org/10.1109/JSTARS.2013.2243113Pierdicca, R., Malinverni, E., Frontoni, E., Colosi, F., & Orazi, R. (2016). 3D visualization tools to explore ancient architectures in South America. Virtual Archaeology Review, 7(15), 44-53.https://doi.org/10.4995/var.2016.5904Pini, L. (2003). Tremezzo il paese dove fioriscono I limoni. Tremezzo: Silvana Editoriale.Previtali, M. (2017). Geopan atl@s: A brokering based gateway to georeferenced historical maps for risk analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 583-589.https://doi.org/10.5194/isprs-archives-XLII-2-W5-583-2017Redweik, P., Cláudio, A., Carmo, M., Naranjo, J., & Sanjosé, J. (2017). Digital preservation of cultural and scientific heritage: involving university students to raise awareness of its importance. Virtual Archaeology Review, 8(16), 22-34. https://doi.org/10.4995/var.2017.4629Scazzosi, L. (2003). Landscape and Cultural Landscape: European Landscape Convention and UNESCO Policy .World Heritage papers, 7, 55-59.Scazzosi, L., (2004).Reading and assessing the landscape as cultural and historical heritage. Landscape Research, 29(4), 335-355.https://doi.org/10.1080/0142639042000288993ViMM. (2018).Virtual Multimodal Museum. Retrieved April 1, 2018, from https://www.vi-mm.euV-MUST. (2015). D. 2.3c State of the art on Virtual Museums in Europe and outside Europe: Report. Commissioned by the V-MUST project. Retrieved October25, 2017, from http://www.v-must.net/sites/default/files/D2.3d_StateArt_VirtualMuseums_2015.pdfWong, A. (2015). The whole story, and then some: 'digital storytelling' in evolving museum practice. In MW2015: Museums and the Web 2015, Chicago, United States. Retrieved October25, 2017, from http://mw2015.museumsandtheweb.com/paper/the-whole-story-and-then-some-digital-storytelling-in-evolving-museum-practice

    An Ontology-Based Representation of Vaulted System for HBIM

    Get PDF
    In recent years, many efforts have been invested in the cultural heritage digitization: surveying, modelling, diagnostic analysis and historic data collection. Nowadays, this effort is finalized in many cases towards historical building information modelling (HBIM). However, the architecture, engineering, construction and facility management (AEC-FM) domain is very fragmented and many experts operating with different data types and models are involved in HBIM projects. This prevents effective communication and sharing of the results not only among different professionals but also among different projects. Semantic web tools may significantly contribute in facilitating sharing, connection and integration of data provided in different domains and projects. The paper describes this aspect specifically focusing on managing the information and models acquired on the case of vaulted systems. Information is collected within a semantic based hub platform to perform cross correlation. Such functionality allows the reconstructing of the rich history of the construction techniques and skilled workers across Europe. To this purpose an ontology-based vaults database has been undertaken and an example of its implementation is presented. The developed ontology-based vaults database is a database that makes uses of a set of ontologies to effectively combine data and information from multiple heterogeneous sources. The defined ontologies provide a high-level schema of a data source and provides a vocabulary for user queries

    Documentación arqueológica e intercambio de datos: topografía digital y procedimiento con datos abiertos aplicado a trabajos de campo arqueológico

    Get PDF
    [EN] The open data paradigm is changing the research approach in many fields such as remote sensing and the social sciences. This is supported by governmental decisions and policies that are boosting the open data wave, and in this context archaeology is also affected by this new trend. In many countries, archaeological data are still protected or only limited access is allowed. However, the strong political and economic support for the publication of government data as open data will change the accessibility and disciplinary expertise in the archaeological field too. In order to maximize the impact of data, their technical openness is of primary importance. Indeed, since a spreadsheet is more usable than a PDF of a table, the availability of digital archaeological data, which is structured using standardised approaches, is of primary importance for the real usability of published data. In this context, the main aim of this paper is to present a workflow for archaeological data sharing as open data with a large level of technical usability and interoperability. Primary data is mainly acquired through the use of digital techniques (e.g. digital cameras and terrestrial laser scanning). The processing of this raw data is performed with commercial software for scan registration and image processing, allowing for a simple and semi-automated workflow. Outputs obtained from this step are then processed in modelling and drawing environments to generate digital models, both 2D and 3D. These crude geometrical data are then enriched with further information to generate a Geographic Information System (GIS) which is finally published as open data using Open Geospatial Consortium (OGC) standards to maximise interoperability.Highlights:Open data will change the accessibility and disciplinary expertise in the archaeological field.The main aim of this paper is to present a workflow for archaeological data sharing as open data with a large level of interoperability.Digital acquisition techniques are used to document archaeological excavations and a Geographic Information System (GIS) is generated that is published as open data.[ES] El paradigma de los datos abiertos está cambiando el enfoque de investigación en muchos campos de estudio como son la teledetección y las ciencias sociales. Está respaldado por decisiones gubernamentales y políticas que están impulsando la ola de los datos abiertos y en este contexto también la arqueología se ve afectada por esta nueva tendencia. En muchos países, los datos arqueológicos todavía están protegidos o se permite un acceso limitado. Sin embargo, el fuerte apoyo político y económico hacia la publicación de datos gubernamentales como datos abiertos también cambiará el panorama en el campo arqueológico. Para maximizar el efecto de los datos, su apertura técnica es de primordial importancia. De hecho, dado que una hoja de cálculo es más útil que la digitalización PDF de una tabla, de manera similar, la disponibilidad de los datos arqueológicos digitales y su estructuración mediante enfoques estandarizados es de importancia primordial para una utilización real de los datos publicados. En este contexto, el objetivo principal de este documento es presentar un flujo de trabajo para compartir datos arqueológicos como datos abiertos con un gran nivel de usabilidad técnica e interoperabilidad. La adquisición de datos primarios se realiza principalmente mediante el uso de técnicas de adquisición digital (por ejemplo, cámaras digitales y escaneado láser terrestre). El procesamiento de los datos crudos se realiza con software comercial para el registro de los escaneados y el procesamiento de imágenes que permite un procesamiento simple y semiautomático. Los resultados del área arqueológica obtenidos de este paso se procesan en modelos y entornos de dibujo que permiten generar modelos digitales, 2D y 3D. Esos datos geométricos crudos se enriquecen luego con información adicional para generar un Sistema de Información Geográfica (SIG) que finalmente se publica con datos abiertos usando los estándares del Consorcio Geoespacial Abierto (OGC) que maximizan la interoperabilidad.The authors want to thank Prof. Philippe Pergola, who had the scientific direction of the archaeological fieldworks in Albenga, and dott. Stefano Roascio and dott.ssa Elena Dellù, who managed the on-field operations; dott. Giovanni Svevo for the help with on-field survey. Thanks to Fondazione Lamboglia and Fondazione De Mari which funded fieldworks. A special thanks to Fondazione Fratelli Confalonieri which funded the research.Previtali, M.; Valente, R. (2019). Archaeological documentation and data sharing: digital surveying and open data approach applied to archaeological fieldworks. Virtual Archaeology Review. 10(20):17-27. https://doi.org/10.4995/var.2019.10377SWORD17271020Anichini, F., & Gattiglia, G. (2015). Verso la rivoluzione. Dall'Open Access all'Open Data: la pubblicazione aperta in archeologia. Post-classical archaeologies, 5, 298-326.Beaulieu, A., & Wouters, P. (2009). E-research as intervention. In N. Jankowski (Ed.), E-research: transformation in Scholarly Practice, (pp. 54 - 69). New York, NY: Routledge.Bizer, C., Heath, T. & Berners-Lee, T. (2009). Linked data-the story so far. International journal on semantic web and information systems, 5(3), 1-22. http://doi:10.4018/jswis.2009081901.Boulton, G., Campbell, P., Collins, B., Elias, P., Hall, W., Laurie, G., & Walport, M. (2012). Science as an open enterprise. London, England: Royal Society.Burkel, V. (2016). Environmental Health Tracking Rides the Open Data Wave. Journal of Environmental Health, 78(7), 36-38.Campana, S., Scopigno, R., Carpentiero, G. & Cirillo, M. (Eds.) (2016). CAA2015. Keep The Revolution Going: Proceedings of the 43rd Annual Conference on Computer Applications and Quantitative Methods in Archaeology. Oxford: Archaeopress Archaeology.Carrion, D., Migliaccio, F., Minini, G., & Zambrano, C. (2015). Open Web Services: new tools for Medievalist Historians to manage and share their research work. Geomatics Workbooks, 12, 55-66. Retrieved from https://re.public.polimi.it/retrieve/handle/11311/980787/39679/FOSS4G-eu15_submission_119.pdfCreative Commons, (2018a). Homepage, Retrieved April 10, 2018 from https://creativecommons.org/.Creative Commons, (2018b). About the licences, Retrieved April 10, 2018 from https://creativecommons.org/licenses/?lang=en.Costa, S., Beck, A., Bevan, A., & Ogden, J. (2012). Defining and advocating open data in archaeology. In G.Earl, T. Sly, A. Chrysanthi, P. Murrieta-Flores, C. Papadopoulos, I. Romanowska & D. Wheatley (Eds.), Archaeology in the Digital Era: Proceedings of the 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology (CAA) University of Southampton on 26-30 March 2012, I, (pp. 449-456) Amsterdam University Press: Amsterdam.Dawes, S. S., Vidiasova, L., & Parkhimovich, O. (2016). Planning and designing open government data programs: An ecosystem approach. Government Information Quarterly, 33(1), 15-27. http://doi: 10.1016/j.giq.2016.01.003.De Reu, J., Plets, G., Verhoeven, G., De Smedt, P., Bats, M., Cherretté, B., & Van Meirvenne, M. (2013). Towards a three-dimensional cost-effective registration of the archaeological heritage. Journal of archaeological science, 40(2), 1108-1121. http://doi: 10.1016/j.jas.2012.08.040.Gattiglia, G. (2009). Open Digital Archives in archeologia. Good practice. Archeologia e Calcolatori supplemento 2, 49-63.Egger-Peitler I. & Polzer T. (2014). Open Data: European Ambitions and Local Efforts. Experiences from Austria. In M. Gascó-Hernández (Ed), Open Government. Public Administration and Information Technology, vol 4. Springer, New York, NY. http://doi: 10.1007/978-1-4614-9563-5_9.Harris, E. (1989). Principles of archaeological stratigraphy. London.Kersten, T. P., & Lindstaedt, M. (2012, October). Image-based low-cost systems for automatic 3D recording and modelling of archaeological finds and objects. In M. Ioannides, D. Fritsch, J. Leissner, R. Davies, F. Remondino, & R. Caffo (Eds), Progress in Cultural Heritage Preservation. EuroMed 2012. Lecture Notes in Computer Science, vol 7616 (pp. 1-10). Springer, Berlin, Heidelberg. http://doi: 10.1007/978-3-642-34234-9_1.Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures and their consequences. London: Sage.Olson, B. R., Gordon, J. M., Runnels, C., & Chomyszak, S. (2014). Experimental three-dimensional printing of a lower Palaeolithic handaxe: an assessment of the technology and analytical value. Lithic Technology, 39(3), 162-172. http://doi: 10.1179/2051618514Y.0000000004.Pergola, P., Spadea, G., Roascio, S., Dellù, E., Castiglia, G., Svevo, G., & Valente, R. (2014). Il complesso di San Calocero ad Albenga alla luce dei nuovi dati (campagna di scavo in concessione al Pontificio Istituto di Archeologia Cristiana del 2014). Rivista di Archeologia Cristiana, 90, 365-421.Portalés, C., Alonso-Monasterio, P., & Viñals, M. J. (2017). 3D virtual reconstruction and visualisation of the archaeological site Castellet de Bernabé (Llíria, Spain). Virtual Archaeology Review (Vol. 8, No. 16, pp. 72-85). Universitat Politècnica de València. doi:https://doi.org/10.4995/var.2017.5890Richards, J. D., & Winters, J. (2015). Digging into Data: Open Access and Open Data. European Journal of Post-Classical Archaeologies, 5, 285-298.Russo, M., Remondino, F., & Guidi, G. (2011). Principali tecniche e strumenti per il rilievo tridimensionale in ambito archeologico. Archeologia e calcolatori, 22, 169-198.Samuelson, P. A. (1954). The Pure Theory of Public Expenditure. The Review of Economics and Statistics, 36(4), 387-389.Scopigno, R., Callieri, M., Dellepiane, M., Ponchio, F., & Potenziani, M. (2017). Delivering and using 3D models on the web: are we ready?. Virtual Archaeology Review (Vol. 8, No. 17, pp. 1-9). Universitat Politècnica de València. doi:https://doi.org/10.4995/var.2017.6405.Spadea Noviero, G., Pergola, P., & Roascio, S. (2010). Albenga. Un antico spazio cristiano. Chiesa e monastero di San Calocero al Monte.Trabucco, M. (2009). Pubblico ma non pubblico: prospettive normative sulla proprietà intellettuale dei dati archeologici. Archeologia e Calcolatori supplemento 2, 65-70.Valente, R., Brumana, R., Oreni, D., Banfi, F., Barazzetti, L., & Previtali, M. (2017). Object-Oriented Approach for 3d Archaeological Documentation. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W5,707-712. http://doi: 10.5194/isprs-archives-XLII-2-W5-707-2017.Wessels, B., Finn, R. L., Linde, P., Mazzetti, P., Nativi, S., Riley, S., Smallwood, R., Taylor, M. J., Tsoukala, V., Wadhwa, K. & Wyatt, S. (2014). Issues in the development of open access to research data. Prometheus: Critical Studies in Innovation, 32(1), 49-66. http://doi: 10.1080/08109028.2014.956505.Wiley, D. (2014). The Access Compromise and the 5th R. Iterating toward openness. Retrieved December 13, 2015 from http://opencontent.org/blog/archives/3221.Zuiderwijk, A., & Janssen, M. (2014). Open data policies, their implementation and impact: A framework for comparison. Government Information Quarterly, 31(1), 17-29. http://doi: 10.1016/j.giq.2013.04.003

    A virtual Hub brokering approach for integration of historical and modern maps

    Get PDF
    Geospatial data are today more and more widespread. Many different institutions, such as Geographical Institutes, Public Administrations, collaborative communities (e.g., OSM) and web companies, make available nowadays a large number of maps. Besides this cartography, projects of digitizing, georeferencing and web publication of historical maps have increasingly spread in the recent years. In spite of these variety and availability of data, information overload makes difficult their discovery and management: without knowing the specific repository where the data are stored, it is difficult to find the information required and problems of interconnection between different data sources and their restricted interoperability limit a wide utilization of available geo-data. This paper aims to describe some actions performed to assure interoperability between data, in particular spatial and geographic data, gathered from different data providers, with different features and referring to different historical periods. The article summarizes and exemplifies how, starting from projects of historical map digitizing and Historical GIS implementation, respectively for the Lombardy and for the city of Parma, the interoperability is possible in the framework of the ENERGIC OD project. The European project ENERGIC OD, thanks to a specific component - the virtual hub - based on a brokering framework, copes with the previous listed problems and allows the interoperability between different data sources

    rigorous procedure for mapping thermal infrared images on three dimensional models of building facades

    Get PDF
    A rigorous methodology for mapping thermal and RGB images on three-dimensional (3-D) models of building facades is presented. The developed method differs from most existing approaches because it relies on the use of thermal images coupled with 3-D models derived from terrestrial laser scanning surveying. The primary issue for an accurate texturing is the coregistration of the geometric model of the facade and the thermal images in the same reference system. This task is done by using a procedure standing out from other approaches adopted in current practice, which are mainly based on the independent registration of each image on the basis of homography or space resection techniques. A rigorous photogrammetric orientation of both thermal and RGB images is computed together in a combined bundle adjustment. This solution allows one to have a better control of the quality of the results, especially to reduce errors and artifacts in areas where more images are mosaicked onto the 3-D model. Several products can be obtained: 3-D triangulated textured models or raster products like orthophotos, having the temperature as radiometric value. The proposed approach is tested on different buildings of Politecnico di Milano University. Applications demonstrated the performance of the procedure and its technical applicability in routine thermal surveys
    corecore