
UNDERSTANDING 3D POINT CLOUD DEEP NEURAL NETWORKS BY 
VISUALIZATION TECHNIQUES 

 
 

Yuwei Cao​1,​*, Mattia Previtali​1​, Marco Scaioni​1 

 
1​ Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano 

via Ponzio 31, 20133 Milano, Italy - emails: {yuwei.cao, mattia.previtali, marco.scaioni}@polimi.it  
 

Commission II, WG II/6 
 
 

KEY WORDS: Deep Learning, Reconstruction, Visualization, 3DCAM, 3D Point Cloud 
 
 
ABSTRACT: 
 
In the wake of the success of Deep Learning Networks (DLN) for image recognition, object detection, shape classification and                   
semantic segmentation, this approach has proven to be both a major breakthrough and an excellent tool in point cloud classification.                    
However, understanding how different types of DLN achieve still lacks. In several studies the output of segmentation/classification                 
process is compared against benchmarks, but the network is treated as a “black-box” and intermediate steps are not deeply analysed.                    
Specifically, here the following questions are discussed: (1) what exactly did DLN learn from a point cloud? (2) On the basis of what                       
information do DLN make decisions? To conduct such a quantitative investigation of these DLN applied to point clouds, this paper                    
investigates the visual interpretability for the decision-making process. Firstly, we introduce a reconstruction network able to                
reconstruct and visualise the learned features, in order to face with question (1). Then, we propose 3DCAM to indicate the                    
discriminative point cloud regions used by these networks to identify that category, thus dealing with question (2). Through                  
answering the above two questions, the paper would like to offer some initial solutions to better understand the application of DLN to                      
point clouds. 
 
 
 

1. INTRODUCTION 

Inspired by human brains, Deep Learning (DL) is a subset of           
Machine Learning techniques that teaches computers to do what         
comes naturally to humans: learn from experience. Recent        
studies have shown that the features learned by various deep          
learning architectures (e.g., Convolutional Neural Network -       
CNN, Fully Connected Network - FCN, Recurrent Neural        
Network – RNN, etc.) are highly successful in image         
recognition, object detection, shape classification and semantic       
segmentation tasks. In the wake of the success of DL in those            
fields and the rapid development of 3D acquisition        
technologies, DL has been attracting more and more attention         
and proven to be a major breakthrough in point cloud          
classification tasks as well. Some examples of these techniques         
are PointNet (Qi et al., 2017), PointConv (Wu et al., 2019),           
PointWeb (Zhao et al., 2019), PointCNN (Li et al., 2018).  
 
The extraction of 3D information from point clouds has played          
an important role in the last thirty years, i.e., in the meanwhile            
3D digital data have quickly spreaded out. This task involved          
more subsets, that roughly may be classified in ​segmentation         
and ​classification​. The former refers to the reorganization of the          
point cloud in subsets featuring similar properties. The latter         
consist in labeling each group of points. Both tasks may be also            
carried out in joint manner.  
 
While at the beginning the scope was to filter out off-terrain           
data in digital surface models obtained by means of digital          
image correlation techniques (Gruen, 2012) ​or LiDAR (Kraus        
and Pfeifer, 1998) ​as far as more and more data sets have  
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become available at an even growing resolution and accuracy,  
the need of extracting other types of objects has promoted          
relevant research. In topographic and mapping applications, two        
main approaches were followed, that however have been also         
merged and cascaded to build up complex processing pipelines.         
On one side, in the ​data-driven ​approaches (see, e.g., Forlani et           
al. 2006; Verma et al., 2006; Sohn et al., 2008; Crosilla et al.,             
2013; Guo et al., 2015), points with similar characteristics were          
clustered together to construct classes of homogeneous points.        
In ​model-driven ​approaches (see, e.g., Haala et al., 1998; Maas          
and Vosselman, 1999; Dorninger and Pfeifer, 2008), some        
geometric models were sought in the point cloud to detect some           
specific objects, such as houses, roofs, trees, etc. But with the           
diffusion of 3D imaging and scanning techniques able to collect          
point clouds of buildings (indoor and outdoor – see Previtali et           
al., 2018), a huge amount of data requiring a semantic          
interpretation at a high Level-of-Detail (LoD) transferred the        
interest to this kind of data as well. Even though important           
results were achieved by these traditional approaches, working        
in an efficient way for at least one category of data still faces             
challenges. The complexity of real data cannot be only         
interpreted by models or geometric descriptors. Due to this         
reason, the chance of using methods that could learn from the           
real world, such as DLNs are supposed to do, make the           
application of these tools really promising for segmentation and         
classification of 3D point clouds (see Wang et al., 2020). 
 
Deep Learning architectures may look like a kind of “black          
box” to the end users. For instance, the processing workflow          
starts from input data (i.e., imagery and/or 3D point clouds) and           
through convolutions, different kinds of transformations in       
convolution layers/pooling layers, it ends up with some sets of          
class scores or some types of understandable outputs (such as          
labeled points, bounding box positions, etc.). However, when        
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we look at the outputs and the learnt parameters from such a            
“black box”, it is not always clear what is learnt by these layers             
inside the network. In several studies the output of         
segmentation/classification process is compared against     
benchmarks where the semantic meaning of each object is         
already known. Monitoring the contrastive loss, the       
classification error or also the class scores during training does          
not always prohibit the network from learning incorrect features         
for the expected detection, classification or segmentation tasks.        
Therefore, it is necessary to understand what is learnt by          
intermediate layers in DL networks (DLN). 
 
A few previous works (Erhan et al., 2009; Springenberg et al.,           
2014; Zeiler and Fergus, 2014; Mahendran and Vedaldi, 2015;         
Dosovitskiy and Brox, 2016) tried to explain what happened in          
DLN designed for the classification and object recognition        
from images; see, e.g., He et al., 2016; Krizhevsky et al., 2012;            
Olah et al., 2018 among others. A growing number of          
researchers have studied the interpretability of bi-dimensional       
DL methods. However, there is still limited understanding of         
how DLN and their intermediate layers achieve their final         
outputs in the domain of 3D point clouds. Indeed, this type of            
three-dimensional spatial data sets have a totally different        
structure compared to images.  
 
Images ​are based on a lattice structure where each pixel has a            
discrete position within a regular grid, which commonly refers         
to a rectangular matrix structure. The proximity between pixels         
is governed by a precise topology, where each element has its           
neighbours. Each pixel is also characterized by a radiometric         
value, which is described by single (in the case of          
monochromatic imagery) or multiple channels (in RGB or        
multispectral imagery).  
 
In 3D point clouds the position of a point is referred to a given              
spatial reference system, which can be intrinsically defined        
during data acquisition process (e.g., the intrinsic reference        
system of a laser scanning sensor (Vosselman and Maas, 2010)          
or the arbitrary reference system established when processing a         
photogrammetric block without ground constrain (Luhmann et       
al., 2014), or may come from the transformation into another          
reference systems (for example, in the case of georeferencing         
based on ground control points). The spatial position of a point           
is defined by fixing 3 degrees-of-freedom, which can be         
parameterized using cartesian or polar coordinates. Beyond the        
resolution of measured points, these are not cast into a discrete           
structure, and no topological relationships may be defined        
unless the ones based on distances between points. Each point          
may also have additional information, such as laser intensity         
(Scaioni et al., 2018), RGB value or other semantic or          
quantitative attributes. Of course, the additional content of each         
point beyond its position in space may be useful for the           
segmentation/classification process.  
 
From a scientific viewpoint, the understanding of point cloud         
classification based on DLNs is an open issue and current          
knowledge about it is deeply unsatisfactory. To conduct such a          
quantitative explanation of how these networks work, in this         
paper we will investigate the visual interpretability for the         
decision-making process of these architectures and discuss two        
questions:  
 

1. What exactly did DLNs learn from point clouds? 
2. On the basis of what information in the point cloud          

are DLNs making a decision? 
 

The tentative answer to these questions is given by proposing          
two approaches: 
 

1. By means of reconstruction-based feature     
visualizations, the understanding of what DLNs learn       
in their intermediate layers is investigated. This       
method allows us to observe the evolution of features         
during training. From the insightful observations we       
have gained via this feature-visualization approach,      
future research directions may be inspired and       
supported; and 

2. A 3D-CAM attribution visualization, which allows us       
to observe what information from point clouds pushes        
the decision-making process in DLNs.  

 
 

2. RELATED WORK 

While various kinds of DLNs are continuously developed and         
improved in either 2D image analysis and 3D point cloud          
classification, understanding of how these results are achieved        
has not been paid too much attention. This question has sparked           
the interest of various researchers and in response several         
approaches are emerging as ways of understanding DLNs by         
using ​visualization ​techniques. Several approaches for      
understanding and visualizing convolutional networks applied      
to 2D images have been developed in the literature, partly as a            
response to the common criticism that those learned features in          
a deep neural network are not interpretable. In general, these          
approaches can be divided into three groups (Olah et al., 2018): 
 

1. methods based on the visualization of features; 
2. methods based on the visualization of attributes; and 
3. methods based on visualizing by reduction . 

 
In this section we discuss methods (1) and (2), i.e., feature           
visualization and attribution visualization. The aim is to analyse         
the properties of these visualization methods to figure out if and           
how they can be transferred to 3D point clouds. 
 
2.1 Feature Visualization  

Feature visualization may help answer the question about what         
a DLN - or parts of a DLN - are looking for by generating             
examples. Although several methods have been proposed for        
visualizing the feature maps extracted by networks, in this         
section we will focus on the ones that we have retained most            
valuable. 
 
2.1.1 Visualization by Reconstructing Representation ​.     
Feature representation is composed of all neuron activation        
patterns within a layer. Therefore, an idea of visualizing 2D          
image neural networks is to reconstruct the image through         
features and compare the reconstruction result with the original         
image to analyze which features of the image are retained in           
each layer of the DLN. This visualization idea regards the          
process of DLN feature extraction as the process of ​encoding ​,          
and the process of reconstructing the extracted features is         
exactly the reverse process of ​encoding ​, which is called the          
decoding ​process.  
 
In 2015, Mahendran and Vedaldi (2015) proposed this idea of          
reconstructing features to visually analyze Convolutional Neural       
Networks (CNN). The gradient descent method with       
regularization terms is used to reconstruct the image of each          
layer, so that the visual information contained in the image          
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features can be analyzed. Later, representation reconstruction       
based on UpconvNet was proposed by (Dosovitskiy and Brox,         
2016), who reconstructed the image by training a UpconvNet         
network. 
 
In 3D space, due to the fact that we usually work with them as              
abstract vectors (e.g., = [17, 0, 0, 0, 0, 89, 41.9, ...]),   a1,1           
feature representations are usually hard to analyze and        
understand, even when they are extracted from original visual         
data. With feature visualization, however, we can transform        
these abstract vectors into more intuitive representations. In        
general, canonical examples are a more natural way to represent          
the abstractions that neural networks learn than abstract vectors.         
To intuitively understand and interpret these DLNs for        
point-cloud classification, in this paper, we visualise point cloud         
representations by folding the learned features into canonical        
point clouds. Moreover, much of the existing work on         
visualization is concerned with a DLN’s input and output layers.          
However, the power of DLN lies in their hidden layers, as at           
every building block, the network discovers a new feature         
representation of the input. So, in this paper we visualize the           
output of the last pooling layer by forming a general 2D-to-3D           
mapping. 
 
2.2 Attribution Visualization 

The second approach to visualization is known as a ​visualizing          
attribution ​approach, because it relies on probing the network         
with attribution studies. The aim is to highlight which part of a            
training set is responsible for a specific activation of a DLN.  
 
2.2.1 Visualizing by Class Activation Map (CAM). ​Inspired        
by Lin et al. (2013), CAM (Zhou et al., 2016) was proposed            
using global average pooling (GAP) in Network In Network         
(Lin et al., 2013) and GoogLeNet (Szegedy et al., 2015) to           
indicate which part of an image is responsible for the          
classification results in different networks. CAM replaced the        
last fully connected layer with GAP, and it shows its decision as            
a “saliency map”. The improvement of this structure can         
effectively locate the important regions in the image for         
predicting the semantic meaning. Despite CAM has achieved a         
very good performance in the visualization task, it is focused on           
2D image space only. 
 
However, the above-mentioned methods just focus on 2D        
images. In 3D space, Huang et al. (2019) developed a 3D ​class            
attentive interpretable mapping ​(CLAIM) approach to visualize       
the impact of each point during the decision-making process         
inside PointNet CNN. CLAIM allowed us to highlight which         
regions of a point cloud are actually being used for different           
point cloud classification tasks. We would like to emphasize         
that while 3DCAM is not a novel technique that we propose           
here, the observation that it can be applied for various 3D point            
cloud tasks rather than images or only PointNet is, to the best of             
our knowledge, unique to our work. 
 
 

3. METHOD 

To conduct a quantitative explanation of point cloud        
classification process based on DLN, we started from the two          
questions posed in Section 1. 
 
For the first question, we design a reconstruction network to          
reconstruct the features learned from different DLNs. In        
general, the last layer before the fully-connected Softmax layer         

is the most informative representation of the input data, thus we           
visualize the output of the last pooling layer by forming a           
universal 2D-to-3D mapping.  
 
Feature visualization helps us answer what the network detects,         
but it does not answer how the network assembles these          
individual points in point cloud to arrive at later decisions, or           
why these decisions are made. Therefore, for the second         
question, we visualise the attributions of input data by 3D          
Classification Activation Map (3DCAM) in. We generate       
3DCAMs using the global average pooling (GAP) in networks.         
This method has been derived from existing interpretation        
methods (Huang et al., 2019; Zhou et al., 2016) as a starting            
point and modifying them to be used in different 3D DLNs.  
 

 
 

Figure 1: The architecture of our 3D reconstruction.based        
feature visualization network. 

 
3.1 3D reconstruction-based feature visualization 

FoldingNet (Yang et al., 2018) incorporates a decoder which is          
based on two consecutive 3-layer perceptrons to warp a fixed          
2D grid into a point cloud. Inspired by this, we proposed a            
network which can learn different 3D representations of        
different visual abstractions. Thus, we can visualize and        
reconstruct the features learned from various point cloud        
classification DLNs by forming a universal 2D-to-3D mapping,        
and thus answer what these layers learned in the networks.  
 
The procedure for generating representations of learned features        
in PointNet is illustrated in Figure 1. We remove the encoder of            
FoldingNet and replace it with other point cloud classification         
architectures (e.g., PointNet). The output of the last 1D         
convolutional layer in PointNet is passed to a feature-wise         
maximum to produce a -dimensional “codeword” which is    Cout     
the basis for our decoder (reconstruction module). The        
reconstruction module in our reconstruction network is similar        
to FoldingNet’s decoder that has two successive folding        
operations. The first folding operation folds the 2D manifold         
into 3D space, and the second one operates inside the 3D space.            
We have modified the decoder of FoldingNet to make it usable           
with different sizes of input codeword instead of a fixed size           
codeword (1 512) in FoldingNet. Before feeding the codeword ×        
into the reconstruction module, we replicate the codeword m        θ   
times and concatenate the replicated (​m ​, matrix with an     )Cout     
(​m ​,2) matrix, which contains the ​m grid points ( ) on a square        U     
centered at the origin. As each row of is a two-dimensional        U     
grid point, we define the -th row of is . Thus, the -th     i    U   ui    i  
row of the input matrix to the first folding operation is           u , C[ i  ]  
after above concatenation. The following folding operation       
essentially forms a universal 2D-to-3D mapping by 2 successive         
3-multi layer perceptron (MLP). The MLP is applied in parallel          
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to each row of the input matrix. We denote the ​i ​-th row of the              
output matrix as , where is approximated by the    f ( u , C )[ i  ]   f      
MLPs which can be tuned by the input “codeword” and          
approximate multiple arbitrary 2D-3D reconstructions    

With point cloud classificationf ..  f ( u , C )[ i  1] ,  ( u , C )[ i  2] .      
module (PointNet) and reconstruction module, we learn a set of          
visual abstractions/learned features and the representations of       
these learned features by reconstructing them. 
 
3.2 3DCAM-based attribution visualization 

A 3D Class Activation Map (3DCAM) for a particular category          
indicates the discriminative point cloud regions used by DLNs         
to identify that category. Our network architectures depend on         
point cloud classification architectures, then we just perform a         
global average pooling (GCP) layer on the per-point feature         
maps before the final Max pooling layer, as GCP can retain its            
remarkable localization ability until the final layer, which helps         
us to easily identify the discriminative point cloud regions in a           
single forward-pass (Zhou et al., 2016). And then we append a           
fully-connected layer which produces weights to generate the        
desired classification output and produce 3DCAMs.  
 
The procedure for generating class activation maps is illustrated         
in Figure 2. The classification module is the first part of our            
3DCAM network, it could be different point cloud classification         
networks (PointNet or others), in which we will get a per-point           
feature map. The second part is used for generation of 3DCAM.           
A GCP layer is introduced to output the spatial average of the            
per-point feature map the first part produced. To generate the          
final output and class activation maps, we have projected back          
the weights of the classification layer onto the per-point feature          
maps, as illustrated in Figure 2. 
 
For a point cloud made up of ​N unordered    P {p , p , ⋅⋅⋅, p }1  2   n      
points, a single point in the given point cloud is defined as            

. The per-point feature for the single point ,pi (x, y, z)      (p )f i      pi  
which was produced in the classification module, at activation         
unit is denoted as . After we perform GCP on per-point  k    (p )f k i        
feature map, for activation unit , we the spatial average of the     k        
per-point feature map :F k  
 

                           (p ) (p )F k = ∑
 

pi

f k i = 1
N ∑

N

i=1
f k i    (1) 

 
Thus, for a class , the classification score can be    c     Sc    
computed: 
 

                                    Sc F= ∑
 

k
wc

k k
 
   (2) 

 
where is the weight of unit for class , which represents wc

k      k    c    
the importance of for class .F k c  
 
Here, we define the 3DCAM for class is. In that case of      M c   c       
a single point in point cloud , the value of can be   pi     P     (p )M c i    
calculated as: 
 

                                   (p ) f (p )M c i =  ∑
 

k
wc

k k i                     (3) 

 
Thus, 

                                      c (p ) S = ∑
 

pi

M c i   (4) 

Intuitively, based on prior studies (Huang et al., 2019; Zhou et           
al., 2016) the class activation map can be computed which is           
simply a weighted sum of the at different 3D spatial      (p )f k i      
locations. And from equation (3) and (4), we can also prove that            

indicates the importance of the activation at(p )M c i         pi (x, y, z)   
leading to the classification of a point cloud to class .c  
 

 
Figure 2: Illustration of the proposed 3DCAM: the predicted         

class score is mapped back to the previous last layer          
to generate the class activation maps (CAMs). The        
CAM highlights the class-specific discriminative     
regions. 

 
 

4. EXPERIMENTS 

4.1 3D reconstruction of learned feature  

In this section, we have adopted PointNet (Qi et al., 2017) as an             
example of classification DLN. We train the proposed        
reconstruction network to visualize the learned feature in        
PointNet (Qi et al., 2017). Since the intermediate folding steps          
in the reconstruction module and the training process can be          
illustrated by reconstructed points, the gradual change of the         
folding process can be visualized. The input to our classification          
DLN is a point cloud with 2048 points (2048 × 3 matrix). The             
classification architecture can accomplish point cloud      
classification on the basis of different optional strategies. Here         
we follow the design principle of PointNet to test the          
methodology for visualization of reconstructed features. The       
following options have been set up:  
 

● Shared MLP layers with an increasing dimension       
(64,64,64,128,1024) of features, implemented by five      
1-D convolutional layers, each followed by a ReLU        
and a Batch-Normalization layer; and  

● A “symmetric function:” a feature-wise Max pooling       
layer is followed by the MLP layers to generate a          
global feature representation. 

 
The output of the last MLP layer is the input for the Max             
pooling layer to produce a -dimensional abstraction vector     Cout    
(“codeword”) which is the basis for our reconstruction network.         
Our reconstruction network transforms the codeword using two        
3-layers MLP to produce a 2500 × 3 output. The reconstruction           
network is trained using the ShapeNet part dataset (Chang et al.,           
2015) ​which contains 16 categories of the ShapeNet dataset. We          
employ ADAM as an optimizer with an initial learning rate          
0.0001, batch size 1, and weight decay 1e−6, during 250          
epochs. We have trained networks to reconstruct point clouds         
from different feature representations. Several reconstructed      
point clouds after different numbers of training iterations are         
reported in Figure 3. From the training process, we see that           
initial 2D codewords can be converted to point clouds, thus we           
can get insight of how a learned feature looks, and answer what            
point cloud classification networks learned. 
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Figure 3. Illustration of the training process to show how different codewords gradually transfer into a meaningful point cloud. The                    

left most column contains the different input features; the other columns show the reconstructed corresponding point clouds                 
in different epochs. 

 
4.2 3DCAM  

Given the 3DCAM simple connectivity structure, we can start         
identifying the importance of the point cloud regions. Thus, we          
can answer the second question posed in the Introduction: based          
on what information in the point cloud is the DLNs making a            
decision? In this section, we evaluate the interpretation ability         
of 3DCAM when trained on the ModelNet40 benchmark data         
set (Wu et al., 2015). 
 
For our experiments we evaluate the effect of using 3DCAM on           
PointNet, as done in the previous subsection. The input to our           
classification network is a point cloud with 1024 points (1024 ×           
3 matrix). We employ ADAM as an optimizer with an initial           
learning rate 0.001, batch size 16, and weight decay 1e−6,          
during 250 epochs. The setting of hidden layers is the same as            
PointNet, but in our implementation, we have removed the max          

pooling layer and fully-connected layers before the final output         
which can avoid lost too much information and largely decrease          
network parameters, respectively. Then we replace those       
removed layers with a GAP layer followed by a fully-connected          
layer to get the final classification output and class activation          
map. The implemented architecture is shown in Figure 4. 
 
In Figure 5, we show some examples of the CAMs output using            
the above approach. We can see that the discriminative regions          
of the point clouds for various classes are highlighted. In Figure           
6, we highlight the differences in the CAMs for a single point            
cloud when using different classes ​c to generate the maps. We           
observe that the discriminative regions for different classes are         
different even for a given point cloud. This suggests that our           
approach works as expected.  

 

 
 
Figure 4. Illustration of PointNet-3DCAM architecture, including three parts: Spatial Transform Module, PointNet Classification              

Architecture, and class attentive weight computing part.  
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Figure 5. The CAMs of two classes from ModelNet40. The          
maps highlight the discriminative input point cloud       
regions used for point cloud classification, the chair        
legs for chairs and the head and leg in humans. 

 
 

 
 
Figure 6. Examples of the CAMs generated from the top 5           

predicted classes for the given point cloud with        
ground-truth as stool. The predicted class and its score         
are shown above each class activation map. We        
observe that the highlighted regions vary across       
predicted classes.  

 
 

5. CONCLUSIONS 

In this paper, we propose two visualization strategies to get a           
better understanding of Deep Learning Networks (DLNs) for        
point cloud classification. We first propose a reconstruction        
method to visualize what has been learned during the         
intermediate processing layers of a point cloud classification        
network. Then, we introduce a 3D Class Attentive Map         
(3DCAM) approach to visualize the discriminative regions in        
point clouds used by the classification networks to identify the          
category and understand the decision-making process.      
Experiments on ShapeNet and ModelNet40 indicate that the        
proposed visualization approaches can get a better       
understanding of the point cloud classification tasks. 
 

A more extensive application of these methodologies to        
different categories of objects, in particular to the ones         
composing the urban and building environment, is planned to be          
accomplished. More DLNs for point cloud classification will be         
analysed in order to detect the most suitable architecture for          
classifying specific classes of objects. 
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