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ABSTRACT: 

In the last years, point clouds have become the main source of information for building modelling. Although a considerable amount 
of methodologies addressing the automated generation of 3D models from point clouds have been developed, indoor modelling is 
still a challenging task due to complex building layouts and the high presence of severe clutters and occlusions. Most of 
methodologies are highly dependent on data quality, often producing irregular and non-consistent models. Although manmade 
environments generally exhibit some regularities, they are not commonly considered. This paper presents an optimization-based 
approach for detecting regularities (i.e., same shape, same alignment and same spacing) in building indoor features. The 
methodology starts from the detection of openings based on a voxel-based visibility analysis to distinguish ‘occluded’ from ‘empty’ 
regions in wall surfaces. The extraction of regular patterns in windows is addressed from studying the point cloud from an outdoor 
perspective. The layout is regularized by minimizing deformations while respecting the detected constraints. The methodology 
applies for elements placed in the same plane.  

1. INTRODUCTION

Automated generation of 3D indoor models from point clouds 
continues to be an active research topic. Updated and detailed 
spatial models of indoor environments are being increasingly 
demanded for a wide range of applications, including gaming, 
tourism, construction control, navigation, emergency response, 
and location-based services. Among the main challenges 
connected with automated indoor model generation there are the 
possible complexity of building layouts and the abundant 
presence of objects such as pieces of furniture and wall-
hangings resulting in severe clutters and occlusions. 

In the last years, point clouds have gained a lot of popularity 
and have become the main data source of information for 
building modelling. Indeed, point clouds are a very dense and 
accurate set of three-dimensional points representing reality. 
Methodologies automating the reconstruction from point clouds 
can be classified in two major categories: data-driven (bottom-
up) approaches and model-driven (top-down) approaches. While 
model-driven approaches use previous knowledge for searching 
the most appropriate model among a specific library and fitting 
it to the data, data-driven approaches are based on directly 
extracting features such as points or edges from data. 
Consequently, the performance of data-driven approaches is 
highly dependent on data quality and therefore, the existence of 
noise, clutters and occlusions, may ultimately condition the 
completeness and correctness of the final indoor model up to a 
large extent. Most of data-driven methodologies extract the 
elements (walls, floors, ceilings, window, door, etc.) of each 
building independently and therefore, the representation only 
relies on those points corresponding to the individual element. 
However, manmade environments generally exhibit some 

regularities (e.g., all windows have the same shape, they are 
aligned and uniformly distributed along specific directions, etc.) 
that are not taken into consideration if the building’s elements 
are separately extracted. This context-based information is 
crucial for obtaining a consistent model less dependent on data 
quality.  

This paper presents a data-driven method for indoor 
reconstruction starting from point clouds collected by Indoor 
Mobile Mapping Systems. The main assumption of this method 
is the Manhattan-World geometry. According to this 
assumption, elements are characterized by a prevalence of 
planar primitives and straight lines with orthogonal 
intersections. The large majority of existing residential 
buildings in modern cities are in line with this assumption. In 
particular, the presented data-driven procedure tries to cope 
with the presence of significant amount of clutters and 
occlusions, that may be widely observed in indoor environments 
and may cause significant lack of data. However, some 
inaccuracies still persist, which can be solved by considering 
context-based information. In particular, this work, presents a 
procedure to identify similar building elements (specifically 
doors and windows) and restore regularities. In particular, the 
presented methodology can be subdivided into two main steps: 
first, detected objects are grouped according to three regularity 
constraints (i.e., same shape, same alignment, same spacing), 
then the regularized layout is obtained by using the constraints 
inferred in the previous step and enforcing positional and shape 
changes to be minimal.    

The paper is structured as follows. Subsection 1.1 reviews 
related work on data driven methodologies for indoor 
reconstruction with a specific focus on methodologies using 
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regularization for building modelling. Section 2 briefly explains 
the method implemented for recognizing windows and doors in 
indoor scenes. A detailed description of the regularization 
approach is provided in Section 3. The results of the application 
of this methodology are presented and discussed in Section 4. 
Finally, Section 5 is devoted to draw some conclusions and to 
address future developments. 
 
1.1 Related-work 

Using the classification presented in Zlatanova et al. (2013) 
methods dealing with indoor modelling can be grouped, 
according to the primitives they are reconstructing: linear-
primitive, planar-primitive and volumetric-primitive based.  
Linear-primitive methods are based on the preliminary 
extraction of each floorplan, followed by extrusion assuming 
walls as planar and vertical surfaces. These methods are 
generally applied to single floors independently and without 
clutter. Indeed, clutters may result in problems with the 
recognition and reconstruction of doors and windows as (Oesau 
et al., 2018; Ochmann et al., 2016). Planar-primitive 
approaches consist of submitting point clouds to a planar 
primitive detection followed by classification (Sanchez et al., 
2012; Díaz-Vilariño et al., 2017). However, even if these 
algorithms work well for extracting planar patches from laser 
data, they do not consider the complete occlusion problem. 
Volumetric-primitive detection generally imposes a stronger 
regularity. Those methods classified in this group can be applied 
either to 2D (Furukawa et al., 2009) and 3D (Bassier et al., 
2017) data sets. Also grammar-based approaches were used to 
reconstruct MW indoor spaces based on some defined rules for 
splitting and merging volumetric primitives (Khoshelham and 
Díaz-Vilariño, 2014); Becker et al., 2015).  
 
Detection of regular patterns was mainly focusing on building 
façades. In particular, those techniques were designed for 
discovering in single and multi-view images (Muller et al., 
2007; Musialski et al., 2010; Nan et al., 2012; Al Halawani et 
al., 2013; Huang et al., 2014, Xu et al., 2015). Those techniques 
generally rely on specific characteristics of facades structures 
such as regularity and orthogonality, to infer regular patterns 
and to complete missing parts. In many cases (Muller et al., 
2007; Musialski et al., 2010, Al Halawani et al., 2013) authors 
assumed that the façade is governed by a hidden global 
rectilinear grid. Even if such assumption may hold for façade 
reconstruction it may be too strong in the case of detection of 
indoor regularities such as repetition of doors. Indeed, in those 
cases repeated patterns are weaker and other regularities may 
appear, such as all doors have the same shape and are aligned 
with respect the to the ground. Fewer works are focusing on 
identifying regular patterns in a 3D space. Mitra et al. (2006) 
and Shen et al. (2011) present a pair-matching based approach 
to detect symmetries in 3D shapes and point clouds. In Pauly et 
al. (2008) a general regularity detection method for 3D models 
is presented. This approach can be used for extracting a single 
façade pattern. However, in this case similarities in the model 
are detected by considering a local similarity measure of the 
point cloud curvature which is more prone to output outliers. In 
Triebel et al. (2006) a Markov Network approach that requires 
training is used to label points as windows. In Friedman and 
Stamos (2011) and Mesolongitis and Stamos (2012) methods 
for detecting regularities in building façades are presented. 
However, they are mainly addressed to detect only one feature 
type (e.g., windows) and require scan points being organized in 
2D vertical scan-lines which may be a limiting condition if 
multiple scans are fused together. Böhm (2008) published a 
method for completion of point clouds from terrestrial laser 

scanning, which is done by iteratively utilizing the repetitive 
information typically present in urban buildings. Another 
approach aiming at a similar goal was introduced by Zheng et 
al. (2010), who proposed an interactive method for completing 
holes in scans of building façades. This method exploits 
repetitions to consolidate the imperfect data, based on denoising 
and completing pending parts. Another interactive tool for 
assembling architectural models was introduced by Nan et al. 
(2010). In this system, the user defines simple building blocks 
(Smart-Boxes), which snap to common architectural structures 
like windows and balconies. They are assembled through a 
discrete optimization process that balances between fitting the 
point-cloud data and their mutual similarity. In combination 
with user interaction, the system can reconstruct complex 
buildings and façades. In Previtali et al. (2013) regularities are 
imposed on building facades assuming that elements are 
distributed in an irregular lattice schema. Repeated candidates 
are identified according to a voting scheme and the final regular 
lattice is estimated minimizing a score function. Fewer works 
are focusing on enforcing regularities in the case of indoor 
environments.   
 
 

2. OPENING DETECTION  

This paper presents an automatic method for modelling 
Manhattan-World (MW) indoor scenes on the basis of Indoor 
Mobile Mapping Systems (IMMS) data incorporating some 
contextual-based information (namely, detection of regular 
patterns) into a data-driven approach. In particular, the 
methodology presented here focuses on the identification of 
regularities among building elements (windows and doors) and 
on the definition of the final pattern respecting the previously 
identified constraints. However, for the sake of clarity an 
overview of the entire methodology is presented first in 
Subsection 2.1. In Subsection 2.2 a specific focus is given to the 
opening detection as starting point of the regularization 
algorithm. 
 
2.1 Indoor reconstruction overview  

The core of the indoor reconstruction methodology is the 
labelling problem of structural cells in the 2D floorplan. In the 
case of highly cluttered scenes, by assuming the prevalence of 
orthogonal intersections between walls typical of MW scenes, 
the indoor completion is formulated as an energy minimization 
problem using graph cuts. The workflow of the developed 
methodology is presented in Figure 1. 
 
The first step consists in the detection and estimation of planar 
surfaces representing walls, ceilings and floors. In particular, 
the extraction of the potential indoor primitives is carried out by 
using a modified RANSAC implementation for extraction of 
planar surfaces (Previtali et al., 2014). The extracted primitives 
are then refined to reduce under- and over-segmentation issues. 
However, due to occlusions and clutters, some walls may be 
missing in the data set. For this reason, an automated procedure 
is implemented to look for pending elements in a plausible way. 
To achieve this, the developed algorithm incorporates some 
architectural priors on indoor scenes, notably the prevalence of 
orthogonal intersection between walls as in MW building 
assumption. For this reason, some ‘pending walls’ are added to 
prevent complete missing parts. In particular, according to the 
MW assumption those ‘pending walls’ are guessed to 
orthogonally intersect with ‘detected walls.’  
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Starting from ‘detected’ and ‘pending’ walls the indoor building 
model is derived by applying a decomposition and labelling 
procedure based on cell-complex labelling. To this end, the 
floorplan is decomposed into adjacent cells creating a 2D 
arrangement which are labelled as ‘indoor’ and ‘outdoor’. At 
this stage the indoor reconstruction can be formulated as the 
optimal labelling of the cell complex and this way can be 
efficiently handles as an energy minimization problem using 
graph cuts to finalize the creation of the floorplan. 
 
 

 
 

Figure 1. Workflow of the indoor reconstruction procedure. 
 
  
2.2 Opening detection from ray-tracing 

The methodology described in this paper starts from those 
openings detected by implementing a ray-tracing algorithm 
(Alsadik et al, 2014). The detection of openings in indoor 
scenes is a relatively complex task due to the existence of other 
objects such as pieces of furniture causing occlusions that can 
be detected as false positives. To detect real openings from 
occlusions, an occupancy map is generated based on a visibility 
analysis from a ray-tracing algorithm (Adan et al, 2011). In 
particular, once all the indoor structure is determined with wall 
elements, openings may be looked for. Detecting the boundaries 
of openings, such as windows or doors in a wall is also a 
complex task. While in the reconstruction of building façades 
windows are generally detected as holes in the point cloud 
representing the façade itself, this does not generally hold for 
the indoor environment. Indeed, also clutters and occlusions 

may produce significant holes in the point cloud which have to 
be distinguished from real openings. To this end, a ray-tracing 
labelling is applied to generate an occupancy map. 
 
The methodology is implemented for surfaces conforming one 
plane. Once the plane is identified, the point cloud is discretized 
into regular cells and an occupancy map is generated based on 
whether inlier points are detected at each voxel location 
(‘occupied’ voxel) or not (‘empty’ voxel). Afterwards, a ray-
tracing algorithm is implemented to distinguish from ‘empty’ 
and ‘occluded’ voxels. If the ray traced from the observer 
position to the ‘empty’ voxel under evaluation is intersecting 
another ‘occupied’ voxel, the ‘empty’ voxel will be labelled as 
‘occluded’ (Fig. 2). On the contrary, if the ray is not intersecting 
any occupied voxel, it will be labelled as real ‘empty’. For the 
discretization of the voxel space a cylindrical buffer of 3 voxels 
is considered around the identified ray. 
 
 

 
Figure 2. Ray-tracing labelling principle. 

 
 
The main drawback of this approach is given by the fact that 
each element is separately detected. However, windows and 
doors generally present some regularities. For example, 
windows have generally the same shape, they are aligned and 
uniformly distributed along specific directions. Similarly, doors 
are aligned with the ground and have similar sizes. By 
processing each room independently, those regularities are not 
taken into consideration. To identify these regularities, the first 
step is the identification of each element into a specific class 
(i.e., either ‘window’ or ‘door’). The workflow of the developed 
methodology is presented in Figure 3. 
 

 
 
Figure 3. Workflow of ray-tracing algorithm adopted for the 

detection of openings. 
 
Once the building candidate features are detected they are 
subdivided according to their class into windows and doors. 
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First of all, windows are detected using a methodology 
conceived for indoor point clouds only. In spite of that, 
windows are elements that can be observed from an outdoor 
perspective, and this assumption is further exploited to extract 
regularities between elements. Indeed, an outdoor perspective 
may allow an easier identification of regular patterns similarly 
to the analysis of façades (Previtali et al., 2013). Therefore, in 
the case of windows, the observer point is placed outdoors. 
Once the observer point is determined, windows are clustered 
according to the façade they belong to. Indeed, it is supposed 
that windows belonging to the same façade may present some 
similarities. Once the façade is determined the point cloud is 
analysed from this point of observation and gaps are identified 
as previously discussed (Figure 2). To filter out void areas 
determined by partition walls, the aspect ratio of extracted 
features is evaluated. Indeed, partitions’ walls determine from 
an outdoor point of view some very slander gaps. By evaluating 
the aspect ratio, and defining a proper threshold those gaps can 
be eliminated and windows are kept. 
The same procedure is applied to doors. In this case, doors are 
modelled from the corridor to enable regularity extraction. 
Doors are studied from an indoor point of view placed on the 
centre of the corridor. In particular, it is worth to mention that 
by using the presented approach only doors opened or having a 
sidewall can be detected. Doors that belong to the same plane of 
the corridor wall are not recognized. 
 
 

3. REGULARIZATION OF DETECTED OBJECTS 

Once a set of building elements is detected (i.e., either windows 
or doors) O={o1,…, oN}, the main aim of the presented 
methodology is to infer a set of y starting from them R={r1,…, 
rM}. In particular each object oi can be described as a rectangle 
where the position of the bottom left corner is (xi, yi), its height 
is hi and its width is wi, so: oi={xi, yi, hi, wi}. In this paper we 
are looking for three specific sets of constraints: 
 

 ‘same shape;’ 
 ‘same alignment;’ and 
 ‘same spacing.’ 
  

In particular, if two objects oi and oj are characterized by the 
‘same shape’ constraints, this means they share the same width 
and height. So this constraint can be formulated as follows: 
 

        
        (1) 

 
Similarly, if two objects oi and oj have the ‘same vertical 
alignment’ or the ‘same horizontal alignment,’ this constraint 
can be formulated as:  
 

        (vertical alignment) 

        (horizontal alignment) 
(2a) 
(2b) 

 
Finally, the ‘same spacing’ constraints are defined on two 
element pairs. These can be either in the horizontal or in the 
vertical direction. In particular, assuming that oi and oj have the 
same spacing of on and om in the horizontal direction and 
objects are organized in an ascending order with respect to the x 
coordinate (xi<xj<xn<xm), his constraint can be formulated as: 
 

            =>               (3) 
 

A similar definition can be given also for the ‘same spacing’ 
constraints in vertical direction: 
 

            =>               (4) 
 
As previously anticipated the first step of the proposed 
regularization method is the detection of possible regularities 
between detected objects. Given a set of objects O the main goal 
is to identify a set of candidates sharing a specific type of 
similarity. The three types of similarity are separately evaluated. 
First, the ‘same shape’ constraint is evaluated. In particular, the 
whole group of detected objects is clustered, taking into 
consideration hi, wi, by using the mean-shift clustering 
algorithm (Comaniciu and Meer, 2002). This exploits the object 
shape using as bandwidth the user-defined tolerance α. Objects 
with different shapes will be recognized as different clusters. 
The main advantage of mean shift algorithm is that it is a non-
parametric clustering technique which does not require prior 
knowledge of the number of clusters, and does not constrain the 
shape of the clusters. For all objects belonging to the same 
clusters, pairwise constraints defined in Eq. (1) are set up. 
 
Secondly, the ‘same alignment’ constraint is investigated. 
Similar to the previous constraint, two different kinds of 
clustering are applied: the first one by considering the 
‘horizontal alignment’ (x) between objects and the second one 
the vertical alignment (y). Indeed, objects aligned with respect 
to one of the main axis have the same x coordinate (horizontal 
alignment) and/or the same y coordinate (vertical alignment). 
Also in this case the clustering is performed by using mean shift 
algorithm. For all objects belonging to the same clusters, 
pairwise constraints defined in Eq. (2a) and/or Eq. (2b) are set 
up. 
 
Finally, the ‘same spacing’ constraints are evaluated: in this 
case, first of all the spacings between consecutive objects are 
calculated (i.e., objects are organized into an ascending order 
along one direction) and the spacings are clustered. Also in such 
a case, for all objects belonging to the same clusters, pairwise 
constraints defined in Eq. (3) and/or Eq. (4) are set up. 
 
Since in many cases the spacing between objects is obtained as 
a multiplier of a basic dimension (‘unit’) the cluster with 
smaller spacing is used as reference and others are checked it 
they are the integer multiplier of the ‘unit’ (to do this test, the 
mean values of the different clusters are used). A user-defined 
bandwidth tolerance α is used. In the case the following 
constraint are added: 
 

       (     )  (5) 
 
where k is an integer value. 
 
Once the constraints between objects are identified, the second 
step of the proposed approach is aimed at regularizing the 
layout under the previously identified constraints. The 
regularization is performed by using an approach similar to the 
one presented in Dang et al. (2014). In particular, the 
regularization problem is addressed by transforming the initial 
layout, L, into a regularized one, L*, by minimizing the 
following score function: 
 

      ( ∑ [  
  

  
 

 
    

  

 

 
 
    (  

  
  
 

 
    

  

 
)
 
]  (   )∑ [(  

    )
   

   (  
    )

 ])  
(6) 
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where the first term represents the element’s position while the 
second one represents the element’s shape. The parameter ω 
balances the influence between the position and the shape 
constraints. 
 
In addition to the previously identified constraints some 
additional lower and upped bound constraints are added to limit 
possible changes of the element’s position. In particular, the 
maximum allowed width change inside a cluster is limited to 
( ̅      ̅    )  where  ̅ is the average height of the cluster 
and  is the RMSE (Root Mean Square Error) of the cluster. 
Similar constraints are added also for object height. 
By solving the quadratic programming problem of Eq. (6) the 
regularized layout is obtained. Similarly to Jiang et al. (2016), 
constraints are added sequentially to avoid potential conflicts. If 
any conflict is detected the constraint is discarded. 
 
 

4. EXPERIMENTAL RESULTS  

The methodology described in the previous sections has been 
tested in a real case study: a university building indoor surveyed 
with the IMMS Viametris IMS3D (www.viametris.com/). This 
data set is provided by the ISPRS Scientific Initiative 
Benchmark on Indoor Modelling (Khoshelham et al., 2017). 
Figure 4 shows the point cloud and BIM model of the case 
study. As it can be observed in the figure, windows are just 
placed on one side of the building.  
 
In particular, the procedure for regularizing the detected 
windows/doors in the corridor has been tested. The different 
layouts have been independently processed for windows and 
doors. Only the setup of a few parameters has been required: the 
bandwidth α for the mean-shift clustering and the weight ω to 
balance the influence of the position/shape constraints in the 
sore function. The selection of the bandwidth α is influenced by 
several factors:  

 
1. the required level regularization: a higher bandwidth 

value will determine higher regularization; 
2. the noise level in the input data: higher level of noise 

in the input data can be compensated with a higher 
regularization; and 

3. the accuracy of the methodology used for 
identification of building features. 

 
On the other hand, a higher value of ω will give preference to 
the position changes with respect to the shape changes. For the 
case study afforded here, the parameters have been set to 
α=0.03 cm and ω=0.8. The detected regularizing constraints are 
shown in Figure 5 and Figure 6 for building windows and 
corridor doors respectively. 

 

Figure 4: Data set adopted for testing the procedure described in 
this paper: (a) Point cloud with the IMMS sensor 
trajectory (red line); (b) BIM model. 

 
Windows 

Same shape constraint 

 

 

Same alignment constraint 

 

 

Same spacing constraint 

  
  

Figure 5: Detected constraints for the building windows: the detected clusters with means shift clustering are represented with 
different colours (left), and the related features are highlighted with the same colour (right). 
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Corridor doors 1 

Same shape constraint 

 

 

Same alignment constraint 

 

 

Same spacing constraint 

 

 

Corridor doors 2 
Same shape constraint 

  
Same alignment constraint 

 
 

Same spacing constraint 

 
 

  
 
Figure 6. Detected constraints for the building doors in the corridor: the detected clusters with means shift clustering are represented 
with different colours (left), and the related features are highlighted with the same colour (right). 
 
 
In particular, it is possible to observe that the three detected 
feature classes share the alignment constraint (features inside 
each class are aligned) and also the number of ‘same shape’ 
features is high (two ‘same shape’ classes for windows in a total 
range of five features and five ‘same shape’ classes for doors in 
a total range of sixteen). Conversely the number of ‘same 
spacing’ regularities is quite low especially for doors (two 

regularities detected in a total range of 14). This observation 
confirms that in the case of indoor regularities the assumption 
that regularities follow a lattice structure is generally too strict 
and more flexible approaches, like the one presented in this 
paper, are needed. Once the regularities are detected the final 
regularized pattern is computed (see Figure 7).  
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Regularized position 

Windows 

 
Corridor doors 1

 
Corridor doors 2 

 
Figure 7. Regularization results: initial (black) and regularized (red) position of for the building features. 
 
 
Figure 8 shows the final reconstruction for the data sets used. It 
is worth to notice that all rooms have been successfully 
reconstructed and all doors and windows detected. 
 

a. 

b.  
 
Figure 8. Results of the reconstruction of the indoor 

environment adopted as case study: (a) the 
reconstructed model without ceiling; and (b) a 
wireframe view of the same model. 

 
 

5. CONCLUSIONS  

This paper presented an optimization-based approach for 
detecting regularities (i.e., same shape, same alignment; and 
same spacing) in building indoor features. In particular, the 
developed methodology takes as input a set of building features 
(e.g., windows, doors) and detects regularity constraints based 

on some a priori knowledge about the building’s geometry. The 
layout is then regularized by minimizing the deformations of the 
initial layout while respecting the detected constraints.  
 
Future work will try to extend the presented 2D regularizing 
methodology to wider 3D patterns. In addition, level of 
detection of regularities can be increased. Indeed, in this paper 
we focused on the level of building components (doors and 
windows). At a higher level it would be also possible to detect 
and recognize similarities between different rooms and in the 
organization of the floorplan. Detection of such similarities will 
be addressed in the future developments. 
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