1,531 research outputs found
A major genetic locus in <i>Trypanosoma brucei</i> is a determinant of host pathology
The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named <i>TbOrg1</i>). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (<i>TbOrg2</i>). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits
Cavernous lymphangioma of the breast
<p>Abstract</p> <p>Background</p> <p>Cavernous lymphangioma is a rare lesion in the breast of adults. Only a few cases have been documented in literature.</p> <p>Case presentation</p> <p>We describe a 38-year-old woman who presented with a palpable breast lump, which measured 5 × 4 cm. A local excision of the lump was performed and a diagnosis of cavernous lymphangioma was made. The patient is alive and well, after five years of follow-up, with no complaints or recurrence.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first case to be documented in a black African woman. Complete surgical excision seems to be the best modality of treatment of this lesion.</p
Pathological Investigation of Congenital Bicuspid Aortic Valve Stenosis, Compared with Atherosclerotic Tricuspid Aortic Valve Stenosis and Congenital Bicuspid Aortic Valve Regurgitation
Congenital bicuspid aortic valve (CBAV) is the main cause of aortic stenosis (AS) in young adults. However, the histopathological features of AS in patients with CBAV have not been fully investigated.We examined specimens of aortic valve leaflets obtained from patients who had undergone aortic valve re/placement at our institution for severe AS with CBAV (n = 24, CBAV-AS group), severe AS with tricuspid aortic valve (n = 24, TAV-AS group), and severe aortic regurgitation (AR) with CBAV (n = 24, CBAV-AR group). We compared the histopathological features among the three groups. Pathological features were classified using semi-quantitative methods (graded on a scale 0 to 3) by experienced pathologists without knowledge of the patients' backgrounds. The severity of inflammation, neovascularization, and calcium and cholesterol deposition did not differ between the CBAV-AS and TAV-AS groups, and these four parameters were less marked in the CBAV-AR group than in the CBAV-AS (all p<0.01). Meanwhile, the grade of valvular fibrosis was greater in the CBAV-AS group, compared with the TAV-AS and CBAV-AR groups (both p<0.01). In AS patients, thickness of fibrotic lesions was greater on the aortic side than on the ventricular side (both p<0.01). Meanwhile, thickness of fibrotic lesions was comparable between the aortic and ventricular sides in CBAV-AR patients (p = 0.35).Valvular fibrosis, especially on the aortic side, was greater in patients with CBAV-AS than in those without, suggesting a difference in the pathogenesis of AS between CBAV and TAV
Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'.
Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required
Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species
Searches for Gravitational Waves from Binary Neutron Stars: A Review
A new generation of observatories is looking for gravitational waves. These
waves, emitted by highly relativistic systems, will open a new window for ob-
servation of the cosmos when they are detected. Among the most promising
sources of gravitational waves for these observatories are compact binaries in
the final min- utes before coalescence. In this article, we review in brief
interferometric searches for gravitational waves emitted by neutron star
binaries, including the theory, instru- mentation and methods. No detections
have been made to date. However, the best direct observational limits on
coalescence rates have been set, and instrumentation and analysis methods
continue to be refined toward the ultimate goal of defining the new field of
gravitational wave astronomy.Comment: 30 pages, 5 Figures, to appear in "Short-Period Binary Stars:
Observations, Analyses, and Results", Ed.s Eugene F. Milone, Denis A. Leahy,
David W. Hobil
Osmoregulators proline and glycine betaine counteract salinity stress in canola
Salt inundation leads to increased salinization of arable land in many arid and semi-arid regions. Until genetic solutions are found farmers and growers must either abandon salt-affected fields or use agronomic treatments that alleviate salt stress symptoms. Here, field experiments were carried out to study the effect of the osmoregulators proline at 200 mg L-1 and glycine betaine at 400 mg L-1 in counteracting the harmful effect of soil salinity stress on canola plants grown in Egypt. We assessed growth characteristics, yield and biochemical constituents. Results show first that all growth characters decreased with increasing salinity stress but applied osmoregulators alleviated these negative effects. Second, salinity stress decreased photosynthetic pigments, K and P contents, whilst increasing proline, soluble sugars, ascorbic acid, Na and Cl contents. Third, application of osmoregulators without salt stress increased photosynthetic pigments, proline, soluble sugars, N, K and P contents whilst decreasing Na and Cl contents. It is concluded that the exogenously applied osmoregulators glycine betaine and proline can fully or partially counteract the harmful effect of salinity stress on growth and yield of canola.© INRA and Springer-Verlag, France 2012
P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5.
Invasion of erythrocytes by Plasmodium falciparum merozoites is necessary for malaria pathogenesis and is therefore a primary target for vaccine development. RH5 is a leading subunit vaccine candidate because anti-RH5 antibodies inhibit parasite growth and the interaction with its erythrocyte receptor basigin is essential for invasion. RH5 is secreted, complexes with other parasite proteins including CyRPA and RIPR, and contains a conserved N-terminal region (RH5Nt) of unknown function that is cleaved from the native protein. Here, we identify P113 as a merozoite surface protein that directly interacts with RH5Nt. Using recombinant proteins and a sensitive protein interaction assay, we establish the binding interdependencies of all the other known RH5 complex components and conclude that the RH5Nt-P113 interaction provides a releasable mechanism for anchoring RH5 to the merozoite surface. We exploit these findings to design a chemically synthesized peptide corresponding to RH5Nt, which could contribute to a cost-effective malaria vaccine
Translating three states of knowledge--discovery, invention, and innovation
<p>Abstract</p> <p>Background</p> <p>Knowledge Translation (KT) has historically focused on the proper use of knowledge in healthcare delivery. A knowledge base has been created through empirical research and resides in scholarly literature. Some knowledge is amenable to direct application by stakeholders who are engaged during or after the research process, as shown by the Knowledge to Action (KTA) model. Other knowledge requires multiple transformations before achieving utility for end users. For example, conceptual knowledge generated through science or engineering may become embodied as a technology-based invention through development methods. The invention may then be integrated within an innovative device or service through production methods. To what extent is KT relevant to these transformations? How might the KTA model accommodate these additional development and production activities while preserving the KT concepts?</p> <p>Discussion</p> <p>Stakeholders adopt and use knowledge that has perceived utility, such as a solution to a problem. Achieving a technology-based solution involves three methods that generate knowledge in three states, analogous to the three classic states of matter. Research activity generates discoveries that are intangible and highly malleable like a gas; development activity transforms discoveries into inventions that are moderately tangible yet still malleable like a liquid; and production activity transforms inventions into innovations that are tangible and immutable like a solid. The paper demonstrates how the KTA model can accommodate all three types of activity and address all three states of knowledge. Linking the three activities in one model also illustrates the importance of engaging the relevant stakeholders prior to initiating any knowledge-related activities.</p> <p>Summary</p> <p>Science and engineering focused on technology-based devices or services change the state of knowledge through three successive activities. Achieving knowledge implementation requires methods that accommodate these three activities and knowledge states. Accomplishing beneficial societal impacts from technology-based knowledge involves the successful progression through all three activities, and the effective communication of each successive knowledge state to the relevant stakeholders. The KTA model appears suitable for structuring and linking these processes.</p
The utilisation of health research in policy-making: Concepts, examples and methods of assessment
The importance of health research utilisation in policy-making, and of understanding the
mechanisms involved, is increasingly recognised. Recent reports calling for more resources to
improve health in developing countries, and global pressures for accountability, draw greater
attention to research-informed policy-making. Key utilisation issues have been described for at
least twenty years, but the growing focus on health research systems creates additional dimensions.
The utilisation of health research in policy-making should contribute to policies that may eventually
lead to desired outcomes, including health gains. In this article, exploration of these issues is
combined with a review of various forms of policy-making. When this is linked to analysis of
different types of health research, it assists in building a comprehensive account of the diverse
meanings of research utilisation.
Previous studies report methods and conceptual frameworks that have been applied, if with varying
degrees of success, to record utilisation in policy-making. These studies reveal various examples of
research impact within a general picture of underutilisation.
Factors potentially enhancing utilisation can be identified by exploration of: priority setting;
activities of the health research system at the interface between research and policy-making; and
the role of the recipients, or 'receptors', of health research. An interfaces and receptors model
provides a framework for analysis.
Recommendations about possible methods for assessing health research utilisation follow
identification of the purposes of such assessments. Our conclusion is that research utilisation can
be better understood, and enhanced, by developing assessment methods informed by conceptual
analysis and review of previous studies
- …