1,187 research outputs found

    Sweet's syndrome in a patient with Crohn's disease: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sweet's syndrome, also known as acute febrile neutrophilic dermatosis, has been associated with malignancy, autoimmune disease and collagen vascular disease. The association of Crohn's disease and Sweet's syndrome is rare. We report a case of Sweet's syndrome in a patient with Crohn's disease.</p> <p>Case presentation</p> <p>A 63-year-old man with a history of Crohn's disease presented with one-week duration of abdominal pain, diarrhea and hematochezia. He also noticed eruption of painful skin rashes all over his body at the same time. Colonoscopy and esophagogastroduodenoscopy (EGD) showed inflammation involving different parts of the gastrointestinal tract consistent with Crohn's disease. Punch biopsy of the skin lesion was consistent with Sweet's syndrome, which has a rare association with Crohn's disease.</p> <p>Conclusion</p> <p>Crohn's disease should be excluded in patients presenting with Sweet's syndrome and diarrhea. Alternatively, Sweet's syndrome should be considered as a diagnosis when a patient with Crohn's disease develops skin lesions.</p

    A Comparison Of Crassostrea Virginica And C. Ariakensis In Chesapeake Bay: Does Oyster Species Affect Habitat Function?

    Get PDF
    We examined the possibility that a nonnative oyster species would provide an ecologically functional equivalent of the native oyster species if introduced into the Chesapeake Bay. Habitat complexity and associated benthic communities of experimental triploid Crassostrea virginica and Crassostrea ariakensis reefs were investigated at 4 sites of varying salinity, tidal regime, water depth, predation intensity, and disease pressure in the Chesapeake Bay region (Maryland and Virginia). Four experimental treatments were established at each site: C. virginica, C. ariakensis, 50:50 of C. virginica and C. ariakensis, and shell only. Abundance, biomass, species richness, evenness, dominance, and diversity of reef-associated fauna were evaluated in relation to habitat location and oyster species. Although habitat complexity varied with location, no differences among complexity were associated with oyster species. Similarly, differences in faunal assemblages were more pronounced between sites than within sites. Our results show functional equivalency between oyster species with respect to habitat at the intertidal site and the low-salinity subtidal location. At subtidal sites of higher salinity, however, the numbers of organisms associated with C. virginica reefs per unit of oyster biomass were significantly greater than the numbers of organisms associated with C. ariakensis reefs. Multivariate analyses of data from subtidal high-salinity sites revealed unique communities associated with C. virginica treatments, whereas mixed-oyster species assemblages were functionally equivalent to monospecific C. ariakensis experimental treatments. Our study represents the first effort to quantify the potential habitat function of C. ariakensis, which has been proposed for an intentional introduction into Chesapeake Bay, and provides evidence of species-specific similarities and differences in reef-associated communities

    Survival And Growth Of Triploid Crassostrea Virginica (Gmelin, 1791) And C-Ariakensis (Fujita, 1913) In Bottom Environments Of Chesapeake Bay: Implications For An Introduction

    Get PDF
    Survival and growth of triploid Crassostrea virginica and triploid C. ariakensis were investigated at four sites Surrounding Chesapeake Bay, United States, that varied tried in salinity, tidal regime, water depth, predation intensity and disease pressure. Four experimental treatments were established at each site: C. virginica; C. ariakensis; 50:50 of C. virginica: C. ariakensis: and shell only. Oysters were deployed at mean shell heights of 12.80 min and 13.85 mm (C. virginica and C. ariakensis, respectively), at an overall density of 347.5 oysters m(-2). Oyster survival and growth varied significantly, with site and species. Survival was significantly higher in C. virginica than C. ariakensis at the intertidal site, and significantly higher in C. ariakensis than C. virginica at the highest salinity, subtidal site. Survival did not differ significantly between species at the mid and low salinity, subticial sites. For both Species. survival differed significantly between sites, with lowest survival in both species Occurring Lit the intertidal site. Among the subtidal sites. C. virginica survival varied inversely with salinity, whereas C. ariakensis had the lowest Survival at the mid salinity site. Eight months after deployment C. ariakensis were significantly, larger than C. virginica at all sites. This difference generally persisted throughout the experiment, though the size differences between oyster species at the lowest salinity site were small (\u3c 10%). Shell heights within single-species treatments differed significantly between sites; highest growth rates were observed at the high salinity, subtidal site, whereas lowest growth rates were observed at the high salinity, intertidal site. At low and mid salinity subtidal sites, C. ariakensis shell heights were significantly greater in the single-species treatment compared with the mixed-species treatment. Perkinsus marinus infections occurred in both species at all sites, with prevalences varying between sites. In C. virginica, moderate and high intensity infections were only common at the two higher salinity sites, whereas infections in C. ariakensis were generally low, to rare. Haplosporidium nelsoni infections in C. virginica were only observed at the two higher salinity sites and prevalences were generally low. Two out of 53 C. ariakensis tested at the high salinity, subtidal site had rare H. nelsoni infections. Bonamia spp. infections were never observed. Our study supports previous laboratory findings and observations from its native range that C. ariakensis Survives poorly in intertidal habitats. In subtidal habitats, however, C. ariakensis displayed broad environmental tolerances, often exceeding native oyster Survival and growth rates. Post-introduction C. ariakensis Populations would be shaped by the survival and growth patterns described here, but also by their reproductive success, larval Survival, predator-prey interactions and prevailing disease dynamics

    Vaccination against Foot-and-mouth disease : do initial conditions affect its benefit?

    Get PDF
    When facing incursion of a major livestock infectious disease, the decision to implement a vaccination programme is made at the national level. To make this decision, governments must consider whether the benefits of vaccination are sufficient to outweigh potential additional costs, including further trade restrictions that may be imposed due to the implementation of vaccination. However, little consensus exists on the factors triggering its implementation on the field. This work explores the effect of several triggers in the implementation of a reactive vaccination-to-live policy when facing epidemics of foot-and-mouth disease. In particular, we tested whether changes in the location of the incursion and the delay of implementation would affect the epidemiological benefit of such a policy in the context of Scotland. To reach this goal, we used a spatial, premises-based model that has been extensively used to investigate the effectiveness of mitigation procedures in Great Britain. The results show that the decision to vaccinate, or not, is not straightforward and strongly depends on the underlying local structure of the population-at-risk. With regards to disease incursion preparedness, simply identifying areas of highest population density may not capture all complexities that may influence the spread of disease as well as the benefit of implementing vaccination. However, if a decision to vaccinate is made, we show that delaying its implementation in the field may markedly reduce its benefit. This work provides guidelines to support policy makers in their decision to implement, or not, a vaccination-to-live policy when facing epidemics of infectious livestock disease

    Designer diatom episomes delivered by bacterial conjugation.

    Get PDF
    Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify a yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research

    Use of remote sensing to identify suitable breeding habitat for the Kentish Plover and estimate population size along the western coast of Saudi Arabia

    Get PDF
    he identification of the environmental parameters affecting species’ habitat preferences is a key to understanding the relationships between habitat features and species’ distributions. This understanding provides the evidence base upon which to formulate guidelines for managing populations. We used distribution modelling to quantify habitat relationships and to estimate the population size during the breeding season of the Kentish Plover Charadrius alexandrinus, a poorly known species on the western coast of Saudi Arabia. We used a Generalised Linear Model (GLM) with four habitat variables derived from satellite data: elevation, distance to settlements, vegetation cover and soil moisture to produce a habitat suitability model. Validation of this model using a receiver operating characteristic plot suggests that it is at least 80% accurate in predicting suitable sites. We then used our estimate of total area of suitable habitat above a critical suitability threshold and data on Kentish Plover density, to estimate the total population size to be 9,955±1,388 individuals. Based on our model we recommend sites for potential protected areas to be established. Finally, we believe that our modelling approach can provide inputs for conservation planning and long-term population monitoring of Kentish Plover and other shorebirds in the region. We argue that conservation of Kentish Plover habitat will not only protect this species, but will benefit other species, particularly those with similar habitat requirements

    Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing Gn protects mice against rift valley fever virus

    Get PDF
    Background: Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent. Methodology/Principal Findings: We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12. Conclusion/Significance: These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use. © 2010 Bhardwaj et al

    Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome

    Get PDF
    A homozygous mutational change in the Ataxia-Telangiectasia and RAD3 related (ATR) gene was previously reported in two related families displaying Seckel Syndrome (SS). Here, we provide the first identification of a Seckel Syndrome patient with mutations in ATRIP, the gene encoding ATR-Interacting Protein (ATRIP), the partner protein of ATR required for ATR stability and recruitment to the site of DNA damage. The patient has compound heterozygous mutations in ATRIP resulting in reduced ATRIP and ATR expression. A nonsense mutational change in one ATRIP allele results in a C-terminal truncated protein, which impairs ATR-ATRIP interaction; the other allele is abnormally spliced. We additionally describe two further unrelated patients native to the UK with the same novel, heterozygous mutations in ATR, which cause dramatically reduced ATR expression. All patient-derived cells showed defective DNA damage responses that can be attributed to impaired ATR-ATRIP function. Seckel Syndrome is characterised by microcephaly and growth delay, features also displayed by several related disorders including Majewski (microcephalic) osteodysplastic primordial dwarfism (MOPD) type II and Meier-Gorlin Syndrome (MGS). The identification of an ATRIP-deficient patient provides a novel genetic defect for Seckel Syndrome. Coupled with the identification of further ATR-deficient patients, our findings allow a spectrum of clinical features that can be ascribed to the ATR-ATRIP deficient sub-class of Seckel Syndrome. ATR-ATRIP patients are characterised by extremely severe microcephaly and growth delay, microtia (small ears), micrognathia (small and receding chin), and dental crowding. While aberrant bone development was mild in the original ATR-SS patient, some of the patients described here display skeletal abnormalities including, in one patient, small patellae, a feature characteristically observed in Meier-Gorlin Syndrome. Collectively, our analysis exposes an overlapping clinical manifestation between the disorders but allows an expanded spectrum of clinical features for ATR-ATRIP Seckel Syndrome to be define

    Silicon Mie Resonators for Highly Directional Light Emission from monolayer MoS2

    Get PDF
    Controlling light emission from quantum emitters has important applications ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries, such as wires and spheres, support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state, and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a Si nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a Si nanowire

    Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site

    Get PDF
    We introduce a novel method to screen the promoters of a set of genes with shared biological function, against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. The gene sets were obtained from the functional Gene Ontology (GO) classification; for each set and motif we optimized the sequence similarity score threshold, independently for every location window (measured with respect to the TSS), taking into account the location dependent nucleotide heterogeneity along the promoters of the target genes. We performed a high throughput analysis, searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology classes and for 412 known DNA motifs. When combined with binding site and location conservation between human and mouse, the method identifies with high probability functional binding sites that regulate groups of biologically related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were put to several experimental tests. By allowing a "flexible" threshold and combining our functional class and location specific search method with conservation between human and mouse, we are able to identify reliably functional TF binding sites. This is an essential step towards constructing regulatory networks and elucidating the design principles that govern transcriptional regulation of expression. The promoter region proximal to the TSS appears to be of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure
    corecore