154 research outputs found

    Molecular and biochemical characterisation of a novel mutation in POLG associated with Alpers syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA polymerase Îł (<it>POLG</it>) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the <it>POLG </it>gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of the enzyme and produce a broad clinical spectrum. The most frequent mutation p.A467T is localised in the linker region between these domains. In compound heterozygote patients the p.A467T mutation has been described to be associated amongst others with fatal childhood encephalopathy. These patients have a poorer survival rate compared to homozygotes.</p> <p>Methods</p> <p>mtDNA content in various tissues (fibroblasts, muscle and liver) was quantified using quantitative PCR (qPCR). OXPHOS activities in the same tissues were assessed using spectrophotometric methods and catalytic stain of BN-PAGE.</p> <p>Results</p> <p>We characterise a novel splice site mutation in <it>POLG </it>found <it>in trans </it>with the p.A467T mutation in a 3.5 years old boy with valproic acid induced acute liver failure (Alpers-Huttenlocher syndrome). These mutations result in a tissue specific depletion of the mtDNA which correlates with the OXPHOS-activities.</p> <p>Conclusions</p> <p>mtDNA depletion can be expressed in a high tissue-specific manner and confirms the need to analyse primary tissue. Furthermore<it>, POLG </it>analysis optimises clinical management in the early stages of disease and reinforces the need for its evaluation before starting valproic acid treatment.</p

    Metabotropic glutamate receptor 5 as a potential target for smoking cessation

    Get PDF
    Rationale Most habitual smokers find it difficult to quit smoking because they are dependent upon the nicotine present in tobacco smoke. Tobacco dependence is commonly treated pharmacologically using nicotine replacement therapy or drugs, such as varenicline, that target the nicotinic receptor. Relapse rates, however, remain high and there remains a need to develop novel non-nicotinic pharmacotherapies for the dependence that are more effective than existing treatments. Objective The purpose of this paper is to review the evidence from preclinical and clinical studies that drugs that antagonise the metabotropic glutamate receptor 5 (mGluR5) in the brain are likely to be efficacious as treatments for tobacco dependence. Results Imaging studies reveal that chronic exposure to tobacco smoke reduces the density of mGluR5s in human brain. Preclinical results demonstrate that negative allosteric modulators (NAMs) at mGluR5 attenuate both nicotine self-administration and the reinstatement of responding evoked by exposure to conditioned cues paired with nicotine delivery. They also attenuate the effects of nicotine on brain dopamine pathways implicated in addiction. Conclusions Although mGluR5 NAMs attenuate most of the key facets of nicotine dependence they potentiate the symptoms of nicotine withdrawal. This may limit their value as smoking cessation aids. The NAMs that have been employed most widely in preclinical studies of nicotine dependence have too many \u201coff target\u201d effects to be used clinically. However newer mGluR5 NAMs have been developed for clinical use in other indications. Future studies will determine if these agents can also be used effectively and safely to treat tobacco dependence

    Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ Leptons in pp collisions at sqrt[s]=13  TeV

    Get PDF
    Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the τ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event, if any. The analysis is performed using proton-proton collision data collected with the CMS detector at the LHC at a center-of-mass energy of 13  TeV and corresponding to an integrated luminosity of 138  fb^{-1}. These are the first differential measurements of the Higgs boson cross section in the final state of two τ leptons. In final states with a large jet multiplicity or with a Lorentz-boosted Higgs boson, these measurements constitute a significant improvement over measurements performed in other final states

    Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at root s=13 TeV

    Get PDF

    Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at root s=13 TeV

    Get PDF

    Observation of triple J/ψ meson production in proton-proton collisions

    Get PDF
    Data availability: Tabulated results are provided in the HEPData record for this analysis71. Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in CMS data preservation, re-use and open access policy.Code availability: The CMS core software is publically available at https://github.com/cms-sw/cmssw.Copyright . Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272+141−104(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process.SCOAP3.Change history: 27 February 2023A Correction to this paper has been published: https://doi.org/10.1038/s41567-023-01992-
    • 

    corecore