14,902 research outputs found

    Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8.

    Get PDF
    Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the cause of porcine pleuropneumonia. When the bacterium encounters nutritional starvation, the relA-dependent (p)ppGpp-mediated stringent response is activated. The modified nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) are known to be signaling molecules in other prokaryotes. Here, to investigate the role of (p)ppGpp in A. pleuropneumoniae, we created a mutant A. pleuropneumoniae strain, S8ΔrelA, which lacks the (p)ppGpp-synthesizing enzyme RelA, and investigated its phenotype in vitro. S8ΔrelA did not survive after stationary phase (starvation condition) and grew exclusively as non-extended cells. Compared to the wild-type (WT) strain, the S8ΔrelA mutant had an increased ability to form a biofilm. Transcriptional profiles of early stationary phase cultures revealed that a total of 405 bacterial genes were differentially expressed (including 380 up-regulated and 25 down-regulated genes) in S8ΔrelA as compared with the WT strain. Most of the up-regulated genes are involved in ribosomal structure and biogenesis, amino acid transport and metabolism, translation cell wall/membrane/envelope biogenesis. The data indicate that (p)ppGpp coordinates the growth, viability, morphology, biofilm formation and metabolic ability of A. pleuropneumoniae in starvation conditions. Furthermore, S8ΔrelA could not use certain sugars nor produce urease which has been associated with the virulence of A. pleuropneumoniae, suggesting that (p)ppGpp may directly or indirectly affect the pathogenesis of A. pleuropneumoniae during the infection process. In summary, (p)ppGpp signaling represents an essential component of the regulatory network governing stress adaptation and virulence in A. pleuropneumoniae

    Characterisation of the Actinobacillus pleuropneumoniae SXT-related Integrative and Conjugative Element ICEApl2, and analysis of the encoded FloR protein: hydrophobic residues in transmembrane domains contribute dynamically to florfenicol and chloramphenicol efflux

    Get PDF
    Objectives To characterize ICEApl2, an SXT-related integrative and conjugative element (ICE) found in a clinical isolate of the porcine pathogen Actinobacillus pleuropneumoniae, and analyse the functional nature of the encoded FloR. Methods ICEApl2 was identified in the genome of A. pleuropneumoniae MIDG3553. Functional analysis was done using conjugal transfer experiments. MIDG3553 was tested for susceptibility to the antimicrobials for which resistance genes are present in ICEApl2. Lack of florfenicol/chloramphenicol resistance conferred by the encoded FloR protein was investigated by cloning and site-directed mutagenesis experiments in Escherichia coli. Results ICEApl2 is 92 660 bp and contains 89 genes. Comparative sequence analysis indicated that ICEApl2 is a member of the SXT/R391 ICE family. Conjugation experiments showed that, although ICEApl2 is capable of excision from the chromosome, it is not self-transmissible. ICEApl2 encodes the antimicrobial resistance genes floR, strAB, sul2 and dfrA1, and MIDG3553 is resistant to streptomycin, sulfisoxazole and trimethoprim, but not florfenicol or chloramphenicol. Cloning and site-directed mutagenesis of the floR gene revealed the importance of the nature of the hydrophobic amino acid residues at positions 160 and 228 in FloR for determining resistance to florfenicol and chloramphenicol. Conclusions Our results indicate that the nature of hydrophobic residues at positions 160 and 228 of FloR contribute dynamically to specific efflux of florfenicol and chloramphenicol, although some differences in resistance levels may depend on the bacterial host species. This is also, to our knowledge, the first description of an SXT/R391 ICE in A. pleuropneumoniae or any member of the Pasteurellaceae

    Definite discourse-new reference in L1 and L2: The case of L2 Mandarin

    Get PDF
    Definite discourse-new bridging reference (e.g., a school 
 the teacher; Clark, 1975) is a complex syntax-pragmatic component of referential movement, one that is subject to relatively opaque form-function contingency compared with forms used for discourse-old reference, and one that is especially prone to crosslinguistic influence. Research shows Asian second language (L2) learners of English struggle to produce bridging reference appropriately, yet little research has been done on the L2 production of bridging in Asian languages. We collected oral picture sequence narrative data from 80 lower-intermediate L2 Mandarin learners from first language (L1) English (+ article, n = 23) and L1 Korean and Japanese (- article, n = 57) backgrounds, alongside equivalent L1 data. Speakers of article-L1s were more likely than those from article-less L1s to use numeral + classifier noun phrases (NPs) for nonbridging referents and demonstrative + classifier NPs when introducing bridging referents, essentially (and infelicitously) using these constructions as de facto English-like indefinite/definite articles in their L2 Mandarin production. Speakers of article-less languages infelicitously marked bridging relations with nonbridging forms. These findings confirm substantial crosslinguistic difficulties for the L2 marking of this complex syntax-pragmatic phenomenon across relatively underexplored L1/L2 pairs.postprin

    Study of the tortuosity factors at multi-scale for a novel-structured SOFC anode

    Get PDF
    © Published under licence by IOP Publishing Ltd. Gas transport properties are closely related to the tortuosity of the pore network within porous materials. For the first time, this study explores a multi-scale imaging and modelling method to measure the tortuosity of an Solid Oxide Fuel Cell (SOFC) electrode material with pore sizes spanning over hundreds of orders of magnitude. This analysis is normally challenging using image-based techniques, as pores of different sizes may not be easily resolved at the same time using X-ray computed tomography (CT). In this study, a tubular SOFC anode, fabricated by a phase inversion technique, is used to illustrate this approach. A heat flux analogy is used to simulate mass transport and the results show that the embedded large-scale finger-like pores can significantly improve mass transport by providing less tortuous pathways

    Damage identification of concrete arch beam utilising residual frequency response function

    Full text link
    One of the critical missions for bridge structural health monitoring (SHM) is to provide a reliable assessment technique to potential hazards caused by structural damage or other structural defects using continuously monitored vibration data. Recognising the needs and shortcomings of SHM, a project was established by NICTA, the University of Technology Sydney and The University of Sydney to develop reliable damage detection methods to provide robust and accurate assessment techniques for critical bridge infrastructure in Australia. This paper presents the progress of research and development of a vibration-based damage detection technique and its experimental validation in the laboratory. The proposed technique uses residual frequency response functions (FRFs) combined with principal component analysis (PCA) to form damage specific features (DSFs) that are incorporated in pattern recognition using artificial neural networks (ANNs). In the method, FRFs are obtained using modal analysis techniques and damage is identified using ANNs that innovatively map the DSF to damage characteristics, such as damage location and severity. The results of the experimental validation show that the proposed technique can successfully locate and quantify damage induced to a concrete arch beam simulating a real life structural component of the Sydney Harbour Bridge

    Prediction of heavy precipitation in the eastern China flooding events of 2016: Added value of convection‐permitting simulations

    Get PDF
    During the period from June 30th to July 6th, 2016, a heavy rainfall event affected the middle and lower reaches of the Yangtze River valley in eastern China. The event was characterized by high‐intensity, long‐duration (lasted more than 6 days) precipitation and huge amounts (over 600.0 mm) of rainfall. The rainfall moved eastward from the Sichuan basin to the middle Yangtze River valley during the first 2 days, then Mei‐yu front formed and circulations became more “quasi‐stationary”. During the second‐phase, successive heavy rainfall systems occurred repeatedly over the same areas along the front, leading to widespread and catastrophic flooding. In this study, limited‐area convection‐permitting models (CPMs) covering all of eastern China, and global‐model simulations from the Met Office Unified Model are compared to investigate the added values of CPMs on the veracity of short‐range predictions of the heavy rainfall event. The results show that all the models can successfully simulate the accumulated amount and the evolution of this heavy rainfall event. However, the global model produces too much light rainfall (10.0 mm/day), fails to simulate the small‐scale features of both atmospheric circulations and precipitation, and tends to generate steady heavy rainfall over mountainous region. Afternoon precipitation is also excessively suppressed in global model. By comparison, the CPMs add some value in reproducing the spatial distribution of precipitation, the smaller‐scale disturbances within the rain‐bands, the diurnal cycle of precipitation and also reduce the spurious topographical rainfall, although there is a tendency for heavy rainfall to be too intense in CPMs

    PCV104 ANALYSIS OF ANGIOTENSIN-CONVERTING-ENZYME INHIBITORS IN THE US MEDICAID PROGRAM FROM 1991 TO 2007

    Get PDF

    Focus on vulnerable populations and promoting equity in health service utilization ––an analysis of visitor characteristics and service utilization of the Chinese community health service

    Get PDF
    Background Community health service in China is designed to provide a convenient and affordable primary health service for the city residents, and to promote health equity. Based on data from a large national study of 35 cities across China, we examined the characteristics of the patients and the utilization of community health institutions (CHIs), and assessed the role of community health service in promoting equity in health service utilization for community residents. Methods Multistage sampling method was applied to select 35 cities in China. Four CHIs were randomly chosen in every district of the 35 cities. A total of 88,482 visitors to the selected CHIs were investigated by using intercept survey method at the exit of the CHIs in 2008, 2009, 2010, and 2011. Descriptive analyses were used to analyze the main characteristics (gender, age, and income) of the CHI visitors, and the results were compared with that from the National Health Services Survey (NHSS, including CHIs and higher levels of hospitals). We also analyzed the service utilization and the satisfactions of the CHI visitors. Results The proportions of the children (2.4%) and the elderly (about 22.7%) were lower in our survey than those in NHSS (9.8% and 38.8% respectively). The proportion of the low-income group (26.4%) was apparently higher than that in NHSS (12.5%). The children group had the lowest satisfaction with the CHIs than other age groups. The satisfaction of the low-income visitors was slightly higher than that of the higher-income visitors. The utilization rate of public health services was low in CHIs. Conclusions The CHIs in China appears to fulfill the public health target of uptake by vulnerable populations, and may play an important role in promoting equity in health service utilization. However, services for children and the elderly should be strengthened

    A computational strategy for the search of regulatory small RNAs in Actinobacillus pleuropneumoniae.

    Get PDF
    Bacterial regulatory small RNAs (sRNAs) play important roles in gene regulation and are frequently connected to the expression of virulence factors in diverse bacteria. Only a few sRNAs have been described for Pasteurellaceae pathogens and no in-depth analysis of sRNAs has been described for Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, responsible for considerable losses in the swine industry. To search for sRNAs in A. pleuropneumoniae, we developed a strategy for the computational analysis of the bacterial genome by using four algorithms with different approaches, followed by experimental validation. The coding strand and expression of 17 out of 23 RNA candidates were confirmed by Northern blotting, RT-PCR, and RNA sequencing. Among them, two are likely riboswitches, three are housekeeping regulatory RNAs, two are the widely studied GcvB and 6S sRNAs, and 10 are putative novel trans-acting sRNAs, never before described for any bacteria. The latter group has several potential mRNA targets, many of which are involved with virulence, stress resistance, or metabolism, and connect the sRNAs in a complex gene regulatory network. The sRNAs identified are well conserved among the Pasteurellaceae that are evolutionarily closer to A. pleuropneumoniae and/or share the same host. Our results show that the combination of newly developed computational programs can be successfully utilized for the discovery of novel sRNAs and indicate an intricate system of gene regulation through sRNAs in A. pleuropneumoniae and in other Pasteurellaceae, thus providing clues for novel aspects of virulence that will be explored in further studies

    High-Performance Zinc–Air Batteries with Scalable Metal–Organic Frameworks and Platinum Carbon Black Bifunctional Catalysts

    Get PDF
    Metal-organic framework (MOF)-related derivatives have generated significant interest in numerous energy conversion and storage applications, such as adsorption, catalysis, and batteries. However, such materials' real-world applicability is hindered because of scalability and reproducibility issues as they are produced by multistep postsynthesis modification of MOFs, often with high-temperature carbonization and/or calcination. In this process, MOFs act as self-sacrificial templates to develop functional materials at the expense of severe mass loss, and the resultant materials exhibit complex process-performance relationships. In this work, we report the direct applicability of a readily synthesized and commercially available MOF, a zeolitic imidazolate framework (ZIF-8), in a rechargeable zinc-air battery. The composite of cobalt-based ZIF-8 and platinum carbon black (ZIF-67@Pt/CB) prepared via facile solution mixing shows a promising bifunctional electrocatalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), the key charge and discharge mechanisms in a battery. ZIF-67@Pt/CB exhibits long OER/ORR activity durability, notably, a significantly enhanced ORR stability compared to Pt/CB, 85 versus 52%. Interestingly, a ZIF-67@Pt/CB-based battery delivers high performance with a power density of >150 mW cm-2 and long stability for 100 h of charge-discharge cyclic test runs. Such remarkable activities from as-produced ZIF-67 are attributed to the electrochemically driven in situ development of an active cobalt-(oxy)hydroxide nanophase and interfacial interaction with platinum nanoparticles. This work shows commercial feasibility of zinc-air batteries as MOF-cathode materials can be reproducibly synthesized in mass scale and applied as produced
    • 

    corecore