286 research outputs found

    Worldwide Survey of the "Assessing Pain, Both Spontaneous Awakening and Breathing Trials, Choice of Drugs, Delirium Monitoring/Management, Early Exercise/Mobility, and Family Empowerment" (ABCDEF) Bundle

    Get PDF
    OBJECTIVES: To assess the knowledge and use of the Assessment, prevention, and management of pain; spontaneous awakening and breathing trials; Choice of analgesia and sedation; Delirium assessment; Early mobility and exercise; and Family engagement and empowerment (ABCDEF) bundle to implement the Pain, Agitation, Delirium guidelines. DESIGN: Worldwide online survey. SETTING: Intensive care. INTERVENTION: A cross-sectional online survey using the Delphi method was administered to intensivists worldwide, to assess the knowledge and use of all aspects of the ABCDEF bundle. MEASUREMENT AND MAIN RESULTS: There were 1,521 respondents from 47 countries, 57% had implemented the ABCDEF bundle, with varying degrees of compliance across continents. Most of the respondents (83%) used a scale to evaluate pain. Spontaneous awakening trials and spontaneous breathing trials are performed in 66% and 67% of the responder ICUs, respectively. Sedation scale was used in 89% of ICUs. Delirium monitoring was implemented in 70% of ICUs, but only 42% used a validated delirium tool. Likewise, early mobilization was "prescribed" by most, but 69% had no mobility team and 79% used no formal mobility scale. Only 36% of the respondents assessed ICU-acquired weakness. Family members were actively involved in 67% of ICUs; however, only 33% used dedicated staff to support families and only 35% reported that their unit was open 24 hr/d for family visits. CONCLUSIONS: The current implementation of the ABCDEF bundle varies across individual components and regions. We identified specific targets for quality improvement and adoption of the ABCDEF bundle. Our data reflect a significant but incomplete shift toward patient- and family-centered ICU care in accordance with the Pain, Agitation, Delirium guidelines

    Microevolution of Pandemic Vibrio parahaemolyticus Assessed by the Number of Repeat Units in Short Sequence Tandem Repeat Regions

    Get PDF
    The emergence of the pandemic strain Vibrio parahaemolyticus O3:K6 in 1996 caused a large increase of diarrhea outbreaks related to seafood consumption in Southeast Asia, and later worldwide. Isolates of this strain constitutes a clonal complex, and their effectual differentiation is possible by comparison of their variable number tandem repeats (VNTRs). The differentiation of the isolates by the differences in VNTRs will allow inferring the population dynamics and microevolution of this strain but this requires knowing the rate and mechanism of VNTRs' variation. Our study of mutants obtained after serial cultivation of clones showed that mutation rates of the six VNTRs examined are on the order of 10−4 mutant per generation and that difference increases by stepwise addition of single mutations. The single stepwise mutation (SSM) was deduced because mutants with 1, 2, 3, or more repeat unit deletions or insertions follow a geometric distribution. Plausible phylogenetic trees are obtained when, according to SSM, the genetic distance between clusters with different number of repeats is assessed by the absolute differences in repeats. Using this approach, mutants originated from different isolates of pandemic V. parahaemolyticus after serial cultivation are clustered with their parental isolates. Additionally, isolates of pandemic V. parahaemolyticus from Southeast Asia, Tokyo, and northern and southern Chile are clustered according their geographical origin. The deepest split in these four populations is observed between the Tokyo and southern Chile populations. We conclude that proper phylogenetic relations and successful tracing of pandemic V. parahaemolyticus requires measuring the differences between isolates by the absolute number of repeats in the VNTRs considered

    The Caenorhabditis elegans HEN1 Ortholog, HENN-1, Methylates and Stabilizes Select Subclasses of Germline Small RNAs

    Get PDF
    Small RNAs regulate diverse biological processes by directing effector proteins called Argonautes to silence complementary mRNAs. Maturation of some classes of small RNAs involves terminal 2′-O-methylation to prevent degradation. This modification is catalyzed by members of the conserved HEN1 RNA methyltransferase family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are not. However, the mechanisms that determine animal HEN1 substrate specificity have yet to be fully resolved. In Caenorhabditis elegans, a HEN1 ortholog has not been studied, but there is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are methylated in female germline and embryo, but not in male germline. Intriguingly, the methylation pattern of 26G RNAs correlates with the expression of distinct male and female germline Argonautes. Moreover, loss of the female germline Argonaute results in loss of 26G RNA methylation altogether. These findings support a model wherein methylation status of a metazoan small RNA is dictated by the Argonaute to which it binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, our results indicate a broad role for HENN-1 in both endogenous and exogenous gene silencing pathways and provide further insight into the mechanisms of HEN1 substrate discrimination and the diversity within the Argonaute family

    A Combined CXCL10, CXCL8 and H-FABP Panel for the Staging of Human African Trypanosomiasis Patients

    Get PDF
    The actual serological and parasitological tests used for the diagnosis of human African trypanosomiasis (HAT), also known as sleeping sickness, are not sensitive and specific enough. The card agglutination test for trypanosomiasis (CATT) assay, widely used for the diagnosis, is restricted to the gambiense form of the disease, and parasitological detection in the blood and cerebrospinal fluid (CSF) is often very difficult. Another very important problem is the difficulty of staging the disease, a crucial step in the decision of the treatment to be given. While eflornithine is difficult to administer, melarsoprol is highly toxic with incidences of reactive encephalopathy as high as 20%. Staging, which could be diagnosed as early (stage 1) or late (stage 2), relies on the examination of CSF for the presence of parasite and/or white blood cell (WBC) counting. However, the parasite is rarely found in CSF and WBC count is not standardised (cutoff set between 5 and 20 WBC per µL). In the present study, we hypothesized that an early detection of stage 2 patients with one or several proteins in association with clinical evaluation and WBC count would improve staging accuracy and allow more appropriate therapeutic interventions

    Expression of Transposable Elements in Neural Tissues during Xenopus Development

    Get PDF
    Transposable elements comprise a large proportion of animal genomes. Transposons can have detrimental effects on genome stability but also offer positive roles for genome evolution and gene expression regulation. Proper balance of the positive and deleterious effects of transposons is crucial for cell homeostasis and requires a mechanism that tightly regulates their expression. Herein we describe the expression of DNA transposons of the Tc1/mariner superfamily during Xenopus development. Sense and antisense transcripts containing complete Tc1-2_Xt were detected in Xenopus embryos. Both transcripts were found in zygotic stages and were mainly localized in Spemann's organizer and neural tissues. In addition, the Tc1-like elements Eagle, Froggy, Jumpy, Maya, Xeminos and TXr were also expressed in zygotic stages but not oocytes in X. tropicalis. Interestingly, although Tc1-2_Xt transcripts were not detected in Xenopus laevis embryos, transcripts from other two Tc1-like elements (TXr and TXz) presented a similar temporal and spatial pattern during X. laevis development. Deep sequencing analysis of Xenopus tropicalis gastrulae showed that PIWI-interacting RNAs (piRNAs) are specifically derived from several Tc1-like elements. The localized expression of Tc1-like elements in neural tissues suggests that they could play a role during the development of the Xenopus nervous system
    corecore