16,573 research outputs found
A phenomenological model of the superconducting state of the Bechgaard salts
We present a group theoretical analysis of the superconducting state of the
Bechgaard salts, e.g., (TMTSF)_2PF_6 or (TMTSF)_2ClO_6. We show that there are
eight symmetry distinct superconducting states. Of these only the (fully
gapped, even frequency, p-wave, triplet) 'polar state' is consistent with the
full range of the experiments on the Bechgaard salts. The gap of the polar
state is d(k) (psi_uk,0,0), where psi_uk may be any odd parity function that is
translationally invariant.Comment: 4 pages, no figure
An adaptive embedded mesh procedure for leading-edge vortex flows
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76634/1/AIAA-1989-80-667.pd
Overview study of Space Power Technologies for the advanced energetics program
Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space
High-Frequency network activity, global increase in Neuronal Activity, and Synchrony Expansion Precede Epileptic Seizures In Vitro
How seizures start is a major question in epilepsy research. Preictal EEG changes occur in both human patients and animal models, but their underlying mechanisms and relationship with seizure initiation remain unknown. Here we demonstrate the existence, in the hippocampal CA1 region, of a preictal state characterized by the progressive and global increase in neuronal activity associated with a widespread buildup of low-amplitude high-frequency activity (HFA) (100 Hz) and reduction in system complexity.HFAis generated by the firing of neurons, mainly pyramidal cells, at much lower frequencies. Individual cycles ofHFAare generated by the near-synchronous (within 5 ms) firing of small numbers of pyramidal cells. The presence of HFA in the low-calcium model implicates nonsynaptic synchronization; the presence of very similar HFA in the high-potassium model shows that it does not depend on an absence of synaptic transmission. Immediately before seizure onset, CA1 is in a state of high sensitivity in which weak depolarizing or synchronizing perturbations can trigger seizures. Transition to seizure is haracterized by a rapid expansion and fusion of the neuronal populations responsible for HFA, associated with a progressive slowing of HFA, leading to a single, massive, hypersynchronous cluster generating the high-amplitude low-frequency activity of the seizure
Tunable dipolar magnetism in high-spin molecular clusters
We report on the Fe17 high-spin molecular cluster and show that this system
is an exemplification of nanostructured dipolar magnetism. Each Fe17 molecule,
with spin S=35/2 and axial anisotropy as small as D=-0.02K, is the magnetic
unit that can be chemically arranged in different packing crystals whilst
preserving both spin ground-state and anisotropy. For every configuration,
molecular spins are correlated only by dipolar interactions. The ensuing
interplay between dipolar energy and anisotropy gives rise to macroscopic
behaviors ranging from superparamagnetism to long-range magnetic order at
temperatures below 1K.Comment: Replaced with version accepted for publication in Physical Review
Letter
New exact fronts for the nonlinear diffusion equation with quintic nonlinearities
We consider travelling wave solutions of the reaction diffusion equation with
quintic nonlinearities . If the parameters
and obey a special relation, then the criterion for the existence of a
strong heteroclinic connection can be expressed in terms of two of these
parameters. If an additional restriction is imposed, explicit front solutions
can be obtained. The approach used can be extended to polynomials whose highest
degree is odd.Comment: Revtex, 5 page
Heterocyst placement strategies to maximize growth of cyanobacterial filaments
Under conditions of limited fixed-nitrogen, some filamentous cyanobacteria
develop a regular pattern of heterocyst cells that fix nitrogen for the
remaining vegetative cells. We examine three different heterocyst placement
strategies by quantitatively modelling filament growth while varying both
external fixed-nitrogen and leakage from the filament. We find that there is an
optimum heterocyst frequency which maximizes the growth rate of the filament;
the optimum frequency decreases as the external fixed-nitrogen concentration
increases but increases as the leakage increases. In the presence of leakage,
filaments implementing a local heterocyst placement strategy grow significantly
faster than filaments implementing random heterocyst placement strategies. With
no extracellular fixed-nitrogen, consistent with recent experimental studies of
Anabaena sp. PCC 7120, the modelled heterocyst spacing distribution using our
local heterocyst placement strategy is qualitatively similar to experimentally
observed patterns. As external fixed-nitrogen is increased, the spacing
distribution for our local placement strategy retains the same shape while the
average spacing between heterocysts continuously increases.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in Physical Biology. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The definitive publisher-authenticated version
will be available onlin
Recommended from our members
Palaeomagnetism of red beds of the Late Devonian Worange Point Formation, SE Australia
Gently folded strata of the Late Devonian Merrimbula Group along the south coast of New South Wales are similar to numerous deposits of Late Devonian to Early Carboniferous, subaerial to shallow marine, quartzose sandstone that are known as the Lambie Facies of SE Australia. Because the Lambie sands overlap the early Palaeozoic tectonic elements of the Lachlan Fold Belt, large displacement since the Late Devonian of any Lachlan terranes, with respect to interior Australia, is precluded. We collected oriented core samples from 37 sites primarily in reddish, quartzose litharenites of the Worange Point Formation. The remanent magnetization is carried by haematite. Incremental thermal demagnetization reveals a dominant, well-defined, steep-upward-north component of magnetization that post-dates the mid-Carboniferous folding. The south pole position (146.4"E, 68.6"S, Ag5 3.1") derived from the overprinted specimens is close to both the Late Carboniferous and mid-Cretaceous reference poles as well as the spin axis of today. The overprint is attributed to both viscous partial thermoremanent and chemical remanent magnetization (VPTRM and CRM). Its exclusively normal polarity is consistent with a mid-Cretaceous acquisition, perhaps related to the rifting of the SE Australian margin
The role of the electromagnetic field in the formation of domains in the process of symmetry breaking phase transitions
In the framework of quantum field theory we discuss the emergence of a phase
locking among the electromagnetic modes and the matter components on an
extended space-time region. We discuss the formation of extended domains
exhibiting in their fundamental states non-vanishing order parameters, whose
existence is not included in the Lagrangian. Our discussion is motivated by the
interest in the study of the general problem of the stability of mesoscopic and
macroscopic complex systems arising from fluctuating quantum components in
connection with the problem of defect formation during the process of
non-equilibrium symmetry breaking phase transitions characterized by an order
parameter.Comment: Physical Review A, in the pres
- …