22 research outputs found

    Characterisation of musk lime (Citrus microcarpa) seed oil

    Get PDF
    BACKGROUND: The seeds of musk lime (Citrus microcarpa) represent a substantial waste product of small‐scale citrus‐processing factories, as they constitute about 100.0 ± 3.2 g kg−1 of the whole fruit and contain a considerable amount of crude fat (338.0 ± 11.3 g kg−1). Thus the aim of the present study was to determine the physicochemical properties of this fat with a view to potential applications. RESULTS: The iodine and saponification values and unsaponifiable matter and free fatty acid contents of the freshly extracted oil were 118.0 g I2 per 100 g oil, 192.6 mg KOH g−1 oil, 22 mg g−1 oil and 18 mg oleic acid g−1 oil respectively. The oil had a Lovibond colour index of 33.1 Y + 1.1 B. Its fatty acid profile indicated that 73.6% of the fatty acids present were unsaturated. Linoleic (L, 31.8%), oleic (O, 29.6%) and palmitic (P, 21.4%) acids were the predominant fatty acids, existing mainly as the triacylglycerols POL (18.9%), PLL (13.7%) and OLL (11.9%). The melting and cooling points of the oil were 10.7 and − 45.2 °C respectively. Electronic nose qualitative analysis of the oil showed the presence of volatile (aroma) compounds, although the concentrations of the more volatile compounds were lower than those present in the seeds. CONCLUSION: Musk lime seeds are a rich source of oil, which is unusual in having linoleic, oleic and palmitic acids dominating the fatty acid composition. This property should make the oil both relatively stable to thermal oxidation owing to the combined presence of oleic and palmitic acids (61.0%) and highly nutritive owing to its high concentration of unsaturated fatty acids (73.6%)

    Effects of natural and synthetic antioxidants on changes in refined, bleached, and deodorized palm olein during deep-fat frying of potato chips

    Get PDF
    The effects of antioxidants on the changes in quality characteristics of refined, bleached, and deodorized (RBD) palm olein during deep-fat frying (at 180°C) of potato chips for 3.5 h/d for seven consecutive days in five systems were compared in this study. The systems were RBD palm olein without antioxidant (control), with 200 ppm butylated hydroxytoluene (BHT), 200 ppm butylated hydroxyanisole (BHA), 200 ppm oleoresin rosemary, and 200 ppm sage extract. Fried oil samples were analyzed for peroxide value (PV), thiobarbituric acid (TBA) value, iodine value (IV), free fatty acid (FFA) content, polymer content, viscosity, E1% 1 cm at 232 and 268 nm, color, fatty acid composition, and C18:2/C16:0 ratio. Sensory quality of the potato chips fried in these systems prior to storage was also evaluated. The storage stability of fried potato chips for 14 wk at ambient temperature was also determined by means of the TBA values and sensory evaluation for rancid odor. Generally, in the oil, oleoresin rosemary gave the lowest rate of increase of TBA value, polymer content, viscosity, E1% 1 cm at 232 and 268 nm compared to control and three other antioxidants. The order of effectiveness (P BHA > sage extract > BHT > control. Prior to storage, the sensory evaluation of fried potato chips for each system showed that there was no significant (P>0.05) difference in terms of flavor, odor, texture, and overall acceptability. The same order of effectiveness (P 0.05) difference in sensory evaluation for rancid odor during storage periods

    Extraction of coconut oil with Lactobacillus plantarum 1041 IAM

    Get PDF
    Extraction of coconut oil with a pure culture of Lactobacillus plantarum 1041 IAM was investigated. Grated coconut meat and water at 30, 50, and 70°C were mixed in various ratios (1:1, 1:2, and 1:3) and allowed to settle for 2–6 h. The most efficient coconut cream separation was obtained at the 1:1 ratio of grated coconut meat to water at 70°C, followed by 6 h settling time. Fermentation was then conducted on coconut cream emulsion with the sample from 1:1 ratio, 70°C, and 6-h settling time. Oil yield from the fermentation process with 5% inoculum of L. plantarum 1041 IAM after 10 h at 40°C was 95.06% Quality characteristics of the extracted oil were as follows: moisture content, 0.04%; peroxide value, 5.8 meq oxygen/kg; anisidine value, 2.10; free fatty acid, 2.45%; iodine value, 4.9; and color, 0.6 (Y + 5R). Extraction of coconut oil from coconut meat with L. plantarum 1041 IAM was significantly improved in both oil yield and quality over the traditional wet process
    corecore