41 research outputs found

    Analysis of copy number variation at DMBT1 and age-related macular degeneration

    Get PDF
    BACKGROUND: DMBT1 is a gene that shows extensive copy number variation (CNV) that alters the number of bacteria-binding domains in the protein and has been shown to activate the complement pathway. It lies next to the ARMS2/HTRA1 genes in a region of chromosome 10q26, where single nucleotide variants have been strongly associated with age-related macular degeneration (AMD), the commonest cause of blindness in Western populations. Complement activation is thought to be a key factor in the pathogenesis of this condition. We sought to investigate whether DMBT1 CNV plays any role in the susceptibility to AMD. METHODS: We analysed long-range linkage disequilibrium of DMBT1 CNV1 and CNV2 with flanking single nucleotide polymorphisms (SNPs) using our previously published CNV and HapMap Phase 3 SNP data in the CEPH Europeans from Utah (CEU). We then typed a large cohort of 860 AMD patients and 419 examined age-matched controls for copy number at DMBT1 CNV1 and CNV2 and combined these data with copy numbers from a further 480 unexamined controls. RESULTS: We found weak linkage disequilibrium between DMBT1 CNV1 and CNV2 with the SNPs rs1474526 and rs714816 in the HTRA1/ARMS2 region. By directly analysing copy number variation, we found no evidence of association of CNV1 or CNV2 with AMD. CONCLUSIONS: We have shown that copy number variation at DMBT1 does not affect risk of developing age-related macular degeneration and can therefore be ruled out from future studies investigating the association of structural variation at 10q26 with AMD

    Expression of Multiple Resistance Genes Enhances Tolerance to Environmental Stressors in Transgenic Poplar (Populus × euramericana ‘Guariento’)

    Get PDF
    Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana ‘Guariento’) harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional research is needed to fully understand the relationships between the altered phenotypes and the function of each transgene in multigene transformants

    Mutagenesis and Functional Studies with Succinate Dehydrogenase Inhibitors in the Wheat Pathogen Mycosphaerella graminicola

    Get PDF
    A range of novel carboxamide fungicides, inhibitors of the succinate dehydrogenase enzyme (SDH, EC 1.3.5.1) is currently being introduced to the crop protection market. The aim of this study was to explore the impact of structurally distinct carboxamides on target site resistance development and to assess possible impact on fitness

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    Antibody levels against GLURP R2, MSP1 block 2 hybrid and AS202.11 and the risk of malaria in children living in hyperendemic (Burkina Faso) and hypo-endemic (Ghana) areas

    Get PDF
    Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6-72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74-0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25-0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73-0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01-1.65, p = 0.04). These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity

    Grass strategies and grassland community responses to environmental drivers: a review

    Full text link
    corecore