31 research outputs found

    Neural Mechanism of a Sex-Specific Risk Variant for Posttraumatic Stress Disorder in the Type I Receptor of the Pituitary Adenylate Cyclase Activating Polypeptide

    Get PDF
    AbstractBackgroundPosttraumatic stress disorder (PTSD) is a frequent anxiety disorder with higher prevalence rates in female patients than in male patients (2.5:1). Association with a single nucleotide polymorphism (rs2267735) in the gene ADCYAP1R1 encoding the type I receptor (PAC1-R) of the pituitary adenylate cyclase activating polypeptide has been reported with PTSD in female patients. We sought to identify the neural correlates of the described PAC1-R effects on associative learning.MethodsIn a reverse genetic approach, we examined two independent healthy samples (N1 = 112, N2 = 73) using functional magnetic resonance imaging during cued and contextual fear conditioning. Skin conductance responses and verbal self-reports of arousal, valence, and contingency were recorded.ResultsWe found that PAC1-R modulates the blood oxygenation level–dependent response of the hippocampus. Specifically, we observed decreased hippocampal activity during contextual, but not during cued, fear conditioning in female participants carrying the PAC1-R risk allele. We observed no significant differences in conditionability for skin conductance responses, verbal reports, or activation in other brain regions between the genotype groups in female participants.ConclusionsOur results suggest that impaired contextual conditioning in the hippocampal formation may mediate the association between PAC1-R and PTSD symptoms. Our findings potentially identify a missing link between the involvement of PAC1-R in PTSD and the well-established structural and functional hippocampal deficits in these patients

    Enhanced Hippocampal Long-Term Potentiation and Fear Memory in Btbd9 Mutant Mice

    Get PDF
    Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS

    Modulation of Tcf7l2 Expression Alters Behavior in Mice

    Get PDF
    The comorbidity of type 2 diabetes (T2D) with several psychiatric diseases is well established. While environmental factors may partially account for these co-occurrences, common genetic susceptibilities could also be implicated in the confluence of these diseases. In support of shared genetic burdens, TCF7L2, the strongest genetic determinant for T2D risk in the human population, has been recently implicated in schizophrenia (SCZ) risk, suggesting that this may be one of many loci that pleiotropically influence both diseases. To investigate whether Tcf7l2 is involved in behavioral phenotypes in addition to its roles in glucose metabolism, we conducted several behavioral tests in mice with null alleles of Tcf7l2 or overexpressing Tcf7l2. We identified a role for Tcf7l2 in anxiety-like behavior and a dose-dependent effect of Tcf7l2 alleles on fear learning. None of the mutant mice showed differences in prepulse inhibition (PPI), which is a well-established endophenotype for SCZ. These results show that Tcf7l2 alters behavior in mice. Importantly, these differences are observed prior to the onset of detectable glucose metabolism abnormalities. Whether these differences are related to human anxiety-disorders or schizophrenia remains to be determined. These animal models have the potential to elucidate the molecular basis of psychiatric comorbidities in diabetes and should therefore be studied further

    Age and hippocampal volume predict distinct parts of default mode network activity

    Get PDF
    Group comparison studies have established that activity in the posterior part of the default-mode network (DMN) is down-regulated by both normal ageing and Alzheimer’s disease (AD). In this study linear regression models were used to disentangle distinctive DMN activity patterns that are more profoundly associated with either normal ageing or a structural marker of neurodegeneration. 312 datasets inclusive of healthy adults and patients were analysed. Days of life at scan (DOL) and hippocampal volume were used as predictors. Group comparisons confirmed a significant association between functional connectivity in the posterior cingulate/retrosplenial cortex and precuneus and both ageing and AD. Fully-corrected regression models revealed that DOL significantly predicted DMN strength in these regions. No such effect, however, was predicted by hippocampal volume. A significant positive association was found between hippocampal volumes and DMN connectivity in the right temporo-parietal junction (TPJ). These results indicate that postero-medial DMN down-regulation may not be specific to neurodegenerative processes but may be more an indication of brain vulnerability to degeneration. The DMN-TPJ disconnection is instead linked to the volumetric properties of the hippocampus, may reflect early-stage regional accumulation of pathology and might be of aid in the clinical detection of abnormal ageing

    Achromatization of Dielectric Mirrors by Means of a Digital Computer

    No full text

    Connecting real-time and non-real-time components

    No full text
    In this paper we focus on the connections between bothcomponent types. We draft a buffer component which represents a non-real-time component in the real-time container.This component allows using non-real-time component's complex services from real-time components, without giv-ing up the real-time. 1 Introduction In the COMQUAD Project (COMponents with QUantitativeproperties and ADaptivity) we want to investigate technologies for components with non-functional properties [2, 5].Examples for these properties are latency bounds for services, memory usage, or disk bandwidth.Instead of developing `yet another'(TM) component technology, we decided to adapt existing technology, in our case asubset of EJB [6], based on the JBoss implementation [10]
    corecore