10 research outputs found

    Climate influences the response of community functional traits to local conditions in bromeliad invertebrate communities

    Get PDF
    Functional traits determine an organism's performance in a given environment and as such determine which organisms will be found where. Species respond to local conditions, but also to larger scale gradients, such as climate. Trait ecology links these responses of species to community composition and species distributions. Yet, we often do not know which environmental gradients are most important in determining community trait composition at either local or biogeographical scales, or their interaction. Here we quantify the relative contribution of local and climatic conditions to the structure and composition of functional traits found within bromeliad invertebrate communities. We conclude that climate explains more variation in invertebrate trait composition within bromeliads than does local conditions. Importantly, climate mediated the response of traits to local conditions; for example, invertebrates with benthic life‐history traits increased with bromeliad water volume only under certain precipitation regimes. Our ability to detect this and other patterns hinged on the compilation of multiple fine‐grained datasets, allowing us to contrast the effect of climate versus local conditions. We suggest that, in addition to sampling communities at local scales, we need to aggregate studies that span large ranges in climate variation in order to fully understand trait filtering at local, regional and global scales

    Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics

    Get PDF
    Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics

    Constraints on the functional trait space of aquatic invertebrates in bromeliads

    Get PDF
    This is the peer reviewed version of the following article: CĂ©rĂ©ghino R, Pillar VD, Srivastava DS, et al. Constraints on the functional trait space of aquatic invertebrates in bromeliads. Funct Ecol. 2018;00:1–13. https://doi.org/10.1111/1365-2435.13141, which has been published in final form at https://doi.org/10.1111/1365-2435.13141 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.CESAB‐FRB Labex CEBA. Grant Number: ANR‐10‐LABX‐25‐01 BPE‐FAPESP. Grant Number: 2016/01209‐9 CNPq‐Brazil. Grant Numbers: 307689/2014‐0, 401345/2014‐9 Royal Society of Edinburgh Carnegie Trust for the Universities of Scotland US NSF. Grant Numbers: DEB‐0218039, DEB‐0620910 USDA IITF. Grant Number: 01‐1G11120101‐001 Saba Conservation Foundation PNPD‐CAPES. Grant Numbers: 2014/04603‐4, 2013087

    Warming of aquatic ecosystems disrupts aquatic-terrestrial linkages in the tropics.

    No full text
    Aquatic ecosystems are tightly linked to terrestrial ecosystems by exchanges of resources, which influence species interactions, community dynamics and functioning in both ecosystem types. However, our understanding of how this coupling responds to climate warming is restricted to temperate, boreal, and arctic regions, with limited knowledge from tropical ecosystems. We investigated how warming aquatic ecosystems impacts cross-ecosystem exchanges in the tropics, through the export of aquatic resources into the terrestrial environment and the breakdown of terrestrial resources within the aquatic environment. We experimentally heated 50 naturally assembled aquatic communities, contained within different sized tank-bromeliads, to a 23.5 - 32°C gradient of mean water temperatures. The biomass, abundance, and richness of aquatic insects emerging into the terrestrial environment all declined with rising temperatures over a 45-day experiment. Structural equation and linear mixed effects modelling suggested that these impacts were driven by deleterious effects of warming on insect development and survival, rather than being mediated by aquatic predation, nutrient availability, or reduced body size. Decomposition was primarily driven by microbial activity. However, total decomposition by both microbes and macroinvertebrates increased with temperature in all but the largest ecosystems, where it decreased. Thus, warming decoupled aquatic and terrestrial ecosystems, by reducing the flux of aquatic resources to terrestrial ecosystems but variably enhancing or reducing terrestrial resource breakdown in aquatic ecosystems. In contrast with increased emergence observed in warmed temperate ecosystems, future climate change is likely to reduce connectivity between tropical terrestrial and aquatic habitats, potentially impacting consumers in both ecosystem types. As tropical ectotherms live closer to their thermal tolerance limits compared to temperate species, warming can disrupt cross-ecosystem dynamics in an interconnected tropical landscape and should be considered when investigating ecosystem-level consequences of climate change

    Geographical variation in the trait-based assembly patterns of multitrophic invertebrate communities

    Get PDF
    International audienceIt has been argued that the mechanisms structuring ecological communities may be more generalizable when based on traits than on species identities. If so, patterns in the assembly of community-level traits along environmental gradients should be similar in different places in the world. Alternatively, geographical change in the species pool and regional variation in climate might result in site-specific relationships between community traits and local environments. These competing hypotheses are particularly untested for animal communities. Here we test the geographical constancy of trait-based assembly patterns using a widespread multi-trophic community: aquatic macroinvertebrates within bromeliads. We used data on 615 invertebrate taxa from 1,656 bromeliads in 26 field sites from Mexico to Argentina. We summarized invertebrate traits with four orthogonal axes, and used these trait axes to examine trait convergence and divergence assembly patterns along three environmental gradients: detrital biomass and water volume in bromeliads, and canopy cover over bromeliads. We found no overall signal of trait-based assembly patterns along any of the environmental gradients. However, individual sites did show trait convergence along detrital and water gradients, and we built predictive models to explore these site differences. Sites that showed trait convergence along detrital gradients were all north of the Northern Andes. This geographical pattern may be related to phylogeographical differences in bromeliad morphology. Bromeliads with low detritus were dominated by detritivorous collectors and filter feeders, where those with high detritus had more sclerotized and predatory invertebrates. Sites that showed the strongest trait convergence along gradients in bromeliad water were in regions with seasonal precipitation. In such sites, bromeliads with low water were dominated by soft-bodied, benthic invertebrates with simple life cycles. In less seasonal sites, traits associated with short-term desiccation resistance, such as hard exoskeletons, were more important. In summary, we show that there are strong geographical effects on the trait-based assembly patterns of this invertebrate community, driven by the biogeography of their foundational plant species as well as by regional climate. We suggest that inclusion of biogeography and climate in trait-based community ecology could help make it a truly general theory

    Natural Sources of Anti-inflammation

    No full text
    corecore