22 research outputs found

    Anti-microfouling activity of lipidic metabolites from the invasive brown alga Sargassum muticum (Yendo) Fensholt

    No full text
    The purification of the chloroform extract from the brown invasive macroalga Sargassum muticum, through a series of chromatographic separations, yielded 12 fractions that were tested against strains of bacteria, microalgae, and fungi involved in marine biofilm formation. The chemical composition of four (a, c, g, and k) out of the six fractions that exhibited anti-microfouling activity was investigated. Fraction a contained saturated and unsaturated linear hydrocarbons (C 12-C 27). Arachidonic acid was identified as the major metabolite in fraction c whereas fraction g contained mainly palmitic, linolenic, and palmitoleic acids. Fraction k was submitted to further purification yielding the fraction kAcaF1e that was composed of galactoglycerolipids, active against the growth of two of the four bacterial strains (Shewanella putrefaciens and Polaribacter irgensii) and all tested fungi. These promising results, in particular the isolation and the activity of galactoglycerolipids, attest the potential of the huge biomass of S. muticum as a source of new environmentally friendly antifouling compounds. © Springer Science + Business Media, LLC 2009

    Effects of temperature and irradiance on filament development of Grateloupia turuturu (Halymeniaceae, Rhodophyta)

    No full text
    Grateloupia turuturu Yamada is an economically valuable red alga with great potential in nutraceuticals and pharmaceuticals. Filaments of G. turuturu are of primary importance in germplasm preservation and sporeling culture, although filaments were not present in its life cycle. In this study, effects of temperature (10, 15, 20, 25, and 30 °C) and irradiance (10, 30, 60, and 90 μmol photons m−2 s−1) with photoperiod 10:14 h (light/dark) on filament development were investigated. Our results indicated that 25 °C was the optimal temperature for the formation of discoid crusts regardless of the irradiance. Conditions of 20 °C and 60 μmol photons m−2 s−1 promoted the development of discoid crusts and formation of upright thalli
    corecore