41 research outputs found

    Feasibility and effects of adapted cardiac rehabilitation after stroke: a prospective trial

    Get PDF
    Abstract Background Despite the cardiovascular etiology of stroke, exercise and risk factor modification programs akin to cardiac rehabilitation (CR) are not available. This study aimed to establish the feasibility of adapting a CR model for individuals with mild to moderate stroke disability. A secondary objective was to determine the program's effects on aerobic and walking capacity, and stroke risk factors. Methods A repeated measures design was used with a 3-month baseline period and 6-month adapted CR intervention (n = 43, mean ± SD age 65 ± 12 years, 30 ± 28 months post stroke). Feasibility was determined by the number of participants who completed the study, occurrence of adverse events and frequency, duration and intensity of exercise performed. To determine effectiveness of the program, outcomes measured included aerobic capacity (VO2peak, ventilatory threshold), 6-Minute Walk Test (6MWT) distance, and risk factors. Descriptive statistics characterized the classes attended and number and intensity of exercise sessions. Paired t-tests, one-factor repeated measures analyses of variance contrasts and chi-square analyses were used to compare changes over time. Results Two participants withdrew during the baseline period. Of the remaining 41 participants who commenced the program, 38 (93%) completed all aspects. No serious adverse effects occurred. Post-intervention, VO2peak improved relative to the stable baseline period (P = 0.046) and the increase in ventilatory threshold approached significance (P = 0.062). Conclusions CR is feasible after stroke and may be adapted to accommodate for those with a range of post-stroke disability. It is effective in increasing aerobic capacity. CR may be an untapped opportunity for stroke survivors to access programs of exercise and risk factor modification to lower future event risk. Trial registration ClinicalTrials.gov registration number: NCT0106749

    Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: the multidisciplinary ‘VoxTox’ research programme

    Get PDF
    The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose.JES was supported by Cancer Research UK through the Cambridge Cancer Centre. NGB, ASP and MG are supported by the National Institute of Health Research Cambridge Biomedical Research Centre. KH, MR AMB, EW and SJB were supported by the VoxTox Research Programme, funded by Cancer Research UK. DJN is supported by Addenbrooke’s Charitable Trust and Cancer Research UK through the Cambridge Cancer Centre. FMB was supported by the Science and Technology Facilities Council. MPDS was part supported by the VoxTox Research Programme, funded by Cancer Research UK. RJ was part supported by the VoxTox Research Programme, funded by Cancer Research UK. LS is supported by the Armstrong Trust. XC was supported by the Isaac Newton Trust. CBS acknowledges support from the EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, the Leverhulme Trust, the EU-RISE project CHiPS and the Cantab Capital Institute for the Mathematics of Information. NT was supported by a Gates-Cambridge Scholarship, funded by the Bill and Melinda Gates Foundation, PLY and SYKS by the Singapore Government

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Observations on the distribution of Bankia australis calman (Mollusca : Teredinidae) in the Patonga Creek mangrove swamp, New South Wales

    No full text
    The distribution of B. australis was found to be limited to the frontal zone of Avicennia marina despite the presence of apparently suitable wood throughout the mangrove swamp. Numbers of B. australis in dead tree stumps were found to decrease with increasing height and decreasing diameter of the stump. It is suggested that the insulating properties of the wood substratum may affect the distribution of B. australis by minimizing temperature effects during emersion. © 1983 CSIRO. All rights reserved
    corecore