916 research outputs found
Capsule Endoscopy: A Valuable Tool in the Follow-Up of People With Celiac Disease on a Gluten-Free Diet
OBJECTIVES: Traditional celiac disease guidelines recommend follow-up endoscopy and duodenal biopsies at 6–12 months after commencing a gluten-free diet (GFD). However, histology may remain abnormal even 1–2 years later. We evaluated the role of capsule endoscopy in patients with celiac disease after treatment with a GFD. METHODS: Twelve adult patients with newly diagnosed celiac disease were prospectively enrolled. All patients had baseline symptom assessment, celiac serology (tissue transglutaminase antibody, tTG), and capsule endoscopy. Twelve months after commencing a GFD, patients underwent repeat symptom assessment, celiac serology, upper gastrointestinal endoscopy, and capsule endoscopy. RESULTS: At baseline, capsule endoscopy detected endoscopic markers of villous atrophy in the duodenum and extending to a variable distance along the small intestine. On the basis of small bowel transit time, the mean±s.e.m. percentage of small intestine with villous atrophy was 18.2±3.7%. After 12 months on a GFD, repeat capsule endoscopy demonstrated mucosal healing from a distal to proximal direction, and the percentage of small intestine with villous atrophy was significantly reduced to 3.4±1.2% (P¼0.0014) and this correlated with improvement in the symptom score (correlation 0.69, P¼0.01). There was a significant improvement in symptom score (5.2±1.0 vs. 1.7±0.4, P¼0.0012) and reduction in immunoglobulin A–tTG levels (81.5±10.6 vs. 17.5±8.2, P¼0.0005). However, 42% of subjects demonstrated persistent villous abnormality as assessed by duodenal histology. CONCLUSIONS: After 12 months on a GFD, patients with celiac disease demonstrate an improvement in symptoms, celiac serology, and the extent of disease as measured by capsule endoscopy. Mucosal healing occurs in a distal to proximal direction. The extent of mucosal healing correlates with improvement in symptoms. Duodenal histology does not reflect the healing that has occurred more distally.Ilmars Lidums, Edward Teo, John Field and Adrian G. Cummin
Biopsy confirmation of metastatic sites in breast cancer patients:clinical impact and future perspectives
Determination of hormone receptor (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor 2 status in the primary tumor is clinically relevant to define breast cancer subtypes, clinical outcome,and the choice of therapy. Retrospective and prospective studies suggest that there is substantial discordance in receptor status between primary and recurrent breast cancer. Despite this evidence and current recommendations,the acquisition of tissue from metastatic deposits is not routine practice. As a consequence, therapeutic decisions for treatment in the metastatic setting are based on the features of the primary tumor. Reasons for this attitude include the invasiveness of the procedure and the unreliable outcome of biopsy, in particular for biopsies of lesions at complex visceral sites. Improvements in interventional radiology techniques mean that most metastatic sites are now accessible by minimally invasive methods, including surgery. In our opinion, since biopsies are diagnostic and changes in biological features between the primary and secondary tumors can occur, the routine biopsy of metastatic disease needs to be performed. In this review, we discuss the rationale for biopsy of suspected breast cancer metastases, review issues and caveats surrounding discordance of biomarker status between primary and metastatic tumors, and provide insights for deciding when to perform biopsy of suspected metastases and which one (s) to biopsy. We also speculate on the future translational implications for biopsy of suspected metastatic lesions in the context of clinical trials and the establishment of bio-banks of biopsy material taken from metastatic sites. We believe that such bio-banks will be important for exploring mechanisms of metastasis. In the future,advances in targeted therapy will depend on the availability of metastatic tissue
Receptor conversion in distant breast cancer metastases
Introduction: When breast cancer patients develop distant metastases, the choice of systemic treatment is usually based on tissue characteristics of the primary tumor as determined by immunohistochemistry (IHC) and/or molecular analysis. Several previous studies have shown that the immunophenotype of distant breast cancer metastases may be different from that of the primary tumor (receptor conversion), leading to inappropriate choice of systemic treatment. The studies published so far are however small and/or methodologically suboptimal. Therefore, definite conclusions that may change clinical practice could not yet be drawn. We therefore aimed to study receptor conversion for estrogen receptor alpha (ER alpha), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in a large group of distant (non-bone) breast cancer metastases by re-staining all primary tumors and metastases with current optimal immunohistochemical and in situ hybridization methods on full sections. Methods: A total of 233 distant breast cancer metastases from different sites (76 skin, 63 liver, 43 lung, 44 brain and 7 gastro-intestinal) were IHC stained for ER alpha, PR and HER2, and expression was compared to that of the primary tumor. HER2 in situ hybridization (ISH) was done in cases of IHC conversion or when primary tumors or metastases showed an IHC 2+ result. Results: Using a 10% threshold, receptor conversion by IHC for ER alpha, PR occurred in 10.3%, 30.0% of patients, respectively. In 10.7% of patients, conversion from ER+ or PR+ to ER-/PR- and in 3.4% from ER-/PR- to ER+ or PR+ was found. Using a 1% threshold, ER alpha and PR conversion rates were 15.1% and 32.6%. In 12.4% of patients conversion from ER+ or PR+ to ER-/PR-, and 8.2% from ER-/PR-to ER+ or PR+ occurred. HER2 conversion occurred in 5.2%. Of the 12 cases that showed HER2 conversion by IHC, 5 showed also conversion by ISH. One further case showed conversion by ISH, but not by IHC. Conversion was mainly from positive in the primary tumor to negative in the metastases for ER alpha and PR, while HER2 conversion occurred equally both ways. PR conversion occurred significantly more often in liver, brain and gastro-intestinal metastases. Conclusions: Receptor conversion by immunohistochemistry in (non-bone) distant breast cancer metastases does occur, is relatively uncommon for ER alpha and HER2, and is more frequent for PR, especially in brain, liver and gastrointestinal metastase
Delay to celiac disease diagnosis and its implications for health-related quality of life
<p>Abstract</p> <p>Background</p> <p>To determine how the delay in diagnosing celiac disease (CD) has developed during recent decades and how this affects the burden of disease in terms of health-related quality of life (HRQoL), and also to consider differences with respect to sex and age.</p> <p>Methods</p> <p>In collaboration with the Swedish Society for Coeliacs, a questionnaire was sent to 1,560 randomly selected members, divided in equal-sized age- and sex strata, and 1,031 (66%) responded. HRQoL was measured with the EQ-5D descriptive system and was then translated to quality-adjusted life year (QALY) scores. A general population survey was used as comparison.</p> <p>Results</p> <p>The mean delay to diagnosis from the first symptoms was 9.7 years, and from the first doctor visit it was 5.8 years. The delay has been reduced over time for some age groups, but is still quite long. The mean QALY score during the year prior to initiated treatment was 0.66; it improved after diagnosis and treatment to 0.86, and was then better than that of a general population (0.79).</p> <p>Conclusions</p> <p>The delay from first symptoms to CD diagnosis is unacceptably long for many persons. Untreated CD results in poor HRQoL, which improves to the level of the general population if diagnosed and treated. By shortening the diagnostic delay it is possible to reduce this unnecessary burden of disease. Increased awareness of CD as a common health problem is needed, and active case finding should be intensified. Mass screening for CD might be an option in the future.</p
Eco-bio-social determinants for house infestation by non-domiciliated Triatoma dimidiata in the Yucatan peninsula, Mexico
Background
Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control.
Methodology/principal findings
We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation.
Conclusions/significance
These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control
Emission of Volatile Organic Compounds After Herbivory from Trifolium pratense (L.) Under Laboratory and Field Conditions
Plants emit a wide range of volatile organic compounds in response to damage by herbivores, and many of the compounds have been shown to attract the natural enemies of insect herbivores or serve for inter- and intra-plant communication. Most studies have focused on volatile emission in the laboratory while little is known about emission patterns in the field. We studied the emission of volatiles by Trifolium pratense (red clover) under both laboratory and field conditions. The emission of 24 compounds was quantified in the laboratory, of which eight showed increased emission rates after herbivory by Spodoptera littoralis caterpillars, including (E)-β-ocimene, the most abundant compound, (Z)-β-ocimene, linalool, (E)-β-caryophyllene, (E,E)-α-farnesene, 4,8-dimethyl-1,3,7-nonatriene (DMNT), 1-octen-3-ol, and methyl salicylate (MeSA). While most of these compounds have been reported as herbivore-induced volatiles from a wide range of plant taxa, 1-octen-3-ol seems to be a characteristic volatile of legumes. In the field, T. pratense plants with varying herbivore damage growing in established grassland communities emitted only 13 detectable compounds, and the correlation between herbivore damage and volatile release was more variable than in the laboratory. For example, the emission of (E)-β-ocimene, (Z)-β-ocimene, and DMNT actually declined with damage, while decanal exhibited increased emission with increasing herbivory. Elevated light and temperature increased the emission of many compounds, but the differences in light and temperature conditions between the laboratory and the field could not account for the differences in emission profiles. Our results indicate that the release of volatiles from T. pratense plants in the field is likely to be influenced by additional biotic and abiotic factors not measured in this study. The elucidation of these factors may be important in understanding the physiological and ecological functions of volatiles in plants
Perspectives for next generation lithium-ion battery cathode materials
Transitioning to electrified transport requires improvements in sustainability, energy density, power density, lifetime, and approved the cost of lithium-ion batteries, with significant opportunities remaining in the development of next-generation cathodes. This presents a highly complex, multiparameter optimization challenge, where developments in cathode chemical design and discovery, theoretical and experimental understanding, structural and morphological control, synthetic approaches, and cost reduction strategies can deliver performance enhancements required in the near- and longer-term. This multifaceted challenge requires an interdisciplinary approach to solve, which has seen the establishment of numerous academic and industrial consortia around the world to focus on cathode development. One such example is the Next Generation Lithium-ion Cathode Materials project, FutureCat, established by the UK’s Faraday Institution for electrochemical energy storage research in 2019, aimed at developing our understanding of existing and newly discovered cathode chemistries. Here, we present our perspective on persistent fundamental challenges, including protective coatings and additives to extend lifetime and improve interfacial ion transport, the design of existing and the discovery of new cathode materials where cation and cation-plus-anion redox-activity can be exploited to increase energy density, the application of earth-abundant elements that could ultimately reduce costs, and the delivery of new electrode topologies resistant to fracture which can extend battery lifetime
- …