118 research outputs found

    Mice Lacking Alkbh1 Display Sex-Ratio Distortion and Unilateral Eye Defects

    Get PDF
    Escherichia coli AlkB is a 2-oxoglutarate- and iron-dependent dioxygenase that reverses alkylated DNA damage by oxidative demethylation. Mouse AlkB homolog 1 (Alkbh1) is one of eight members of the newly discovered family of mammalian dioxygenases.In the present study we show non-Mendelian inheritance of the Alkbh1 targeted allele in mice. Both Alkbh1(-/-) and heterozygous Alkbh1(+/-) offspring are born at a greatly reduced frequency. Additionally, the sex-ratio is considerably skewed against female offspring, with one female born for every three to four males. Most mechanisms that cause segregation distortion, act in the male gametes and affect male fertility. The skewing of the sexes appears to be of paternal origin, and might be set in the pachythene stage of meiosis during spermatogenesis, in which Alkbh1 is upregulated more than 10-fold. In testes, apoptotic spermatids were revealed in 5-10% of the tubules in Alkbh1(-/-) adults. The deficiency of Alkbh1 also causes misexpression of Bmp2, 4 and 7 at E11.5 during embryonic development. This is consistent with the incompletely penetrant phenotypes observed, particularly recurrent unilateral eye defects and craniofacial malformations.Genetic and phenotypic assessment suggests that Alkbh1 mediates gene regulation in spermatogenesis, and that Alkbh1 is essential for normal sex-ratio distribution and embryonic development in mice

    Win-stay, lose-switch and public information strategies for patch fidelity of songbirds with rare extra-pair paternity

    Get PDF
    Determining where organisms breed and understanding why they breed in particular locations are fundamental biological questions with conservation implications. Breeding-site fidelity is common in migratory, territorial songbirds and is typically thought to occur following reproductive success with a social mate and success of nearby conspecifics. It is currently unknown if frequency of extra-pair paternity in a population influences use of information about reproductive success of nearby conspecifics for site fidelity decisions. We investigated patch fidelity of white-eyed vireos (Vireo griseus) based on reproductive success and quantified frequency of extra-pair paternity. We found support only for females making patch fidelity decisions following reproductive success with a social mate. Patch fidelity of males was not associated with reproductive success of nearby conspecifics, suggesting males may not use this information when extra-pair paternity is infrequent or the association is non-existent in this species

    Follicle Stimulating Hormone is an accurate predictor of azoospermia in childhood cancer survivors

    Get PDF
    Funding: RTM is supported by a Wellcome Trust Intermediate Clinical Fellowship (grant no: 098522), https://wellcome.ac.uk/what-we-do/directories/intermediate-clinical-fellowships-people-funded. TWK is supported by Engineering and Physical Sciences Research Council grant EP/P015638/1, http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/P015638/1.The accuracy of Follicle Stimulating Hormone as a predictor of azoospermia in adult survivors of childhood cancer is unclear, with conflicting results in the published literature. A systematic review and post hoc analysis of combined data (n = 367) were performed on all published studies containing extractable data on both serum Follicle Stimulating Hormone concentration and semen concentration in survivors of childhood cancer. PubMed and Medline databases were searched up to March 2017 by two blind investigators. Articles were included if they contained both serum FSH concentration and semen concentration, used World Health Organisation certified methods for semen analysis, and the study participants were all childhood cancer survivors. There was no evidence for either publication bias or heterogeneity for the five studies. For the combined data (n = 367) the optimal Follicle Stimulating Hormone threshold was 10.4 IU/L with specificity 81% (95% CI 76%–86%) and sensitivity 83% (95% CI 76%–89%). The AUC was 0.89 (95%CI 0.86–0.93). A range of threshold FSH values for the diagnosis of azoospermia with their associated sensitivities and specificities were calculated. This study provides strong supporting evidence for the use of serum Follicle Stimulating Hormone as a surrogate biomarker for azoospermia in adult males who have been treated for childhood cancer.Publisher PDFPeer reviewe

    A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated salmonella vaccine strains

    Get PDF
    Colanic acid (CA) is a common exopolysaccharide produced by many genera in the Enterobacteriaceae. It is critical for biofilm formation on HEp-2 cells and on chicken intestinal tissue by Salmonella. In this study, we generated different CA synthesis gene mutants and evaluated the immune responses induced by these mutants. One of these mutations, Ξ”(wza-wcaM)8, which deleted the whole operon for CA synthesis, was introduced into two Salmonella vaccine strains attenuated by auxotrophic traits or by the regulated delayed attenuation strategy (RDAS). The mice immunized with the auxotrophic Salmonella vaccine strain with the deletion mutation Ξ”(wza-wcaM)8 developed higher vaginal IgA titers against the heterologous protective antigen and higher levels of antigen-specific IgA secretion cells in lungs. In Salmonella vaccine strains with RDAS, the strain with the Ξ”(wza-wcaM)8 mutation resulted in higher levels of protective antigen production during in vitro growth. Mice immunized with this strain developed higher serum IgG and mucosal IgA antibody responses at 2 weeks. This strain also resulted in better gamma interferon (IFN-Ξ³) responses than the strain without this deletion at doses of 10(8) and 10(9) CFU. Thus, the mutation Ξ”(wza-wcaM)8 will be included in various recombinant attenuated Salmonella vaccine (RASV) strains with RDAS derived from Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective immunity against bacterial pathogens

    Multisite Phosphorylation Provides an Effective and Flexible Mechanism for Switch-Like Protein Degradation

    Get PDF
    Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically determine the exact extent to which the degradation profile is switch-like. Our results suggest design principles for protein degradation switches which might be a widespread mechanism for precise regulation of cellular processes such as cell cycle progression

    Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology

    Get PDF
    The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies

    Polyamorous Families – Parenting Practice, Stigma and Social Regulation

    Get PDF
    As a response to the greater visibility of alternative relationship and family forms, polyamory (i.e. the practice of consensual multi-partner relationships) has recently moved to the centre of public media attention. Questions of polyamory have emerged as a major concern within law, social policy, family sociology, gender and sexuality studies. Yet certain core issues have remained underexplored. This includes the distinctive nature of polyamorous intimacy, the structure of poly household formations and the dynamics of care work within poly families. In particular, poly parenting has been subject to tabooisation and scandalisation. Governing bodies, the judiciary and educational institutions have remained largely ignorant of polyamorous relationships. Research documents the exclusions of poly families (and individuals) from access to legal provisions and protections and their common discrimination in the courts, namely in custody cases. It further highlights the discrimination of polyidentified adolescents in school and college settings and the predicament that poly families face when interacting with public institutions (including schools and kindergardens). Insights into parenting practices and the organisation of childcare is vital for understanding the transformative potential of polyamorous ways of relating. It is also important for challenging the common demonisation and stigmatisation of polyamory within conservative family politics that perceives polyamory exclusively from a harm perspective. This paper will review and critically analyse existing research on poly parenting focussing on three dimensions: (a) parenting practices, (b) social and legal discrimination, and (c) parental response to stigmatisation. The paper argues for a stronger incorporation of queer perspectives within the guiding frameworks of research into parenting in consensually non-monogamous and polyamorous relationships to highlight the transformative potential of the β€˜queer bonds’ that sustain many of these practices

    TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis

    Get PDF
    BACKGROUND: Tuberculosis (TB) affects one third of the global population, and TB of the central nervous system (CNS-TB) is the most severe form of tuberculosis which often associates with high mortality. The pro-inflammatory cytokine tumour necrosis factor (TNF) plays a critical role in the initial and long-term host immune protection against Mycobacterium tuberculosis (M. tuberculosis) which involves the activation of innate immune cells and structure maintenance of granulomas. However, the contribution of TNF, in particular neuron-derived TNF, in the control of cerebral M. tuberculosis infection and its protective immune responses in the CNS were not clear. METHODS: We generated neuron-specific TNF-deficient (NsTNF / ) mice and compared outcomes of disease against TNF f/f control and global TNF / mice. Mycobacterial burden in brains, lungs and spleens were compared, and cerebral pathology and cellular contributions analysed by microscopy and flow cytometry after M. tuberculosis infection. Activation of innate immune cells was measured by flow cytometry and cell function assessed by cytokine and chemokine quantification using enzyme-linked immunosorbent assay (ELISA). RESULTS: Intracerebral M. tuberculosis infection of TNF / mice rendered animals highly susceptible, accompanied by uncontrolled bacilli replication and eventual mortality. In contrast, NsTNF / mice were resistant to infection and presented with a phenotype similar to that in TNF f/f control mice. Impaired immunity in TNF / mice was associated with altered cytokine and chemokine synthesis in the brain and characterised by a reduced number of activated innate immune cells. Brain pathology reflected enhanced inflammation dominated by neutrophil influx. CONCLUSION: Our data show that neuron-derived TNF has a limited role in immune responses, but overall TNF production is necessary for protective immunity against CNS-TB

    Novel Structural Components of the Ventral Disc and Lateral Crest in Giardia intestinalis

    Get PDF
    Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP) with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment

    Balancing repair and tolerance of DNA damage caused by alkylating agents

    Get PDF
    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity
    • …
    corecore