254 research outputs found

    Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus

    Get PDF
    Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1–100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5–10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated

    Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia

    Get PDF
    Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion

    The p250GAP Gene Is Associated with Risk for Schizophrenia and Schizotypal Personality Traits

    Get PDF
    BACKGROUND: Hypofunction of the glutamate N-Methyl-d-aspartate (NMDA) receptor has been implicated in the pathophysiology of schizophrenia. p250GAP is a brain-enriched NMDA receptor-interacting RhoGAP. p250GAP is involved in spine morphology, and spine morphology has been shown to be altered in the post-mortem brains of patients with schizophrenia. Schizotypal personality disorder has a strong familial relationship with schizophrenia. Several susceptibility genes for schizophrenia have been related to schizotypal traits. METHODS: We first investigated the association of eight linkage disequilibrium-tagging single-nucleotide polymorphisms (SNPs) that cover the p250GAP gene with schizophrenia in a Japanese sample of 431 schizophrenia patients and 572 controls. We then investigated the impact of the risk genetic variant in the p250GAP gene on schizotypal personality traits in 180 healthy subjects using the Schizotypal Personality Questionnaire. RESULTS: We found a significant difference in genotype frequency between the patients and the controls in rs2298599 (χ(2) = 17.6, p = 0.00015). The minor A/A genotype frequency of rs2298599 was higher in the patients (18%) than in the controls (9%) (χ(2) = 15.5, p = 0.000083). Moreover, we found that subjects with the rs2298599 risk A/A genotype, compared with G allele carriers, had higher scores of schizotypal traits (F(1,178) = 4.08, p = 0.045), particularly the interpersonal factor (F(1,178) = 5.85, p = 0.017). DISCUSSION: These results suggest that a genetic variation in the p250GAP gene might increase susceptibility not only for schizophrenia but also for schizotypal personality traits. We concluded that the p250GAP gene might be a new candidate gene for susceptibility to schizophrenia

    NMDA Receptor Hypofunction Leads to Generalized and Persistent Aberrant γ Oscillations Independent of Hyperlocomotion and the State of Consciousness

    Get PDF
    International audienceNMDAr antagonists acutely produces, in the rodent CNS, generalized aberrant gamma oscillations, which are not dependent on hyperlocomotion-related brain state or conscious sensorimotor processing. These findings suggest that NMDAr hypofunction-related generalized gamma hypersynchronies represent an aberrant diffuse network noise, a potential electrophysiological correlate of a psychotic-like state. Such generalized noise might cause dysfunction of brain operations, including the impairments in cognition and sensorimotor integration seen in schizophrenia

    The relation between neuromechanical parameters and Ashworth score in stroke patients

    Get PDF
    Quantifying increased joint resistance into its contributing factors i.e. stiffness and viscosity ("hypertonia") and stretch reflexes ("hyperreflexia") is important in stroke rehabilitation. Existing clinical tests, such as the Ashworth Score, do not permit discrimination between underlying tissue and reflexive (neural) properties. We propose an instrumented identification paradigm for early and tailor made interventions.BioMechanical EngineeringMechanical, Maritime and Materials Engineerin

    Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously reported that the expression of the messenger ribonucleic acid (mRNA) for the NR2A subunit of the N-methyl-D-aspartate (NMDA) class of glutamate receptor was decreased in a subset of inhibitory interneurons in the cerebral cortex in schizophrenia. In this study, we sought to determine whether a deficit in the expression of NR2A mRNA was present in the subset of interneurons that contain the calcium buffer parvalbumin (PV) and whether this deficit was associated with a reduction in glutamatergic inputs in the prefrontal cortex (PFC) in schizophrenia.</p> <p>Methods</p> <p>We examined the expression of NR2A mRNA, labeled with a <sup>35</sup>S-tagged riboprobe, in neurons that expressed PV mRNA, visualized with a digoxigenin-labeled riboprobe via an immunoperoxidase reaction, in twenty schizophrenia and twenty matched normal control subjects. We also immunohistochemically labeled the glutamatergic axon terminals with an antibody against vGluT1.</p> <p>Results</p> <p>The density of the PV neurons that expressed NR2A mRNA was significantly decreased by 48-50% in layers 3 and 4 in the subjects with schizophrenia, but the cellular expression of NR2A mRNA in the PV neurons that exhibited a detectable level of this transcript was unchanged. In addition, the density of vGluT1-immunoreactive boutons was significantly decreased by 79% in layer 3, but was unchanged in layer 5 of the PFC in schizophrenia.</p> <p>Conclusion</p> <p>These findings suggest that glutamatergic neurotransmission via NR2A-containing NMDA receptors on PV neurons in the PFC may be deficient in schizophrenia. This may disinhibit the postsynaptic excitatory circuits, contributing to neuronal injury, aberrant information flow and PFC functional deficits in schizophrenia.</p

    Proton Magnetic Resonance Spectroscopy in 22q11 Deletion Syndrome

    Get PDF
    OBJECTIVE: People with velo-cardio-facial syndrome or 22q11 deletion syndrome (22q11DS) have behavioral, cognitive and psychiatric problems. Approximately 30% of affected individuals develop schizophrenia-like psychosis. Glutamate dysfunction is thought to play a crucial role in schizophrenia. However, it is unknown if and how the glutamate system is altered in 22q11DS. People with 22q11DS are vulnerable for haploinsufficiency of PRODH, a gene that codes for an enzyme converting proline into glutamate. Therefore, it can be hypothesized that glutamatergic abnormalities may be present in 22q11DS. METHOD: We employed proton magnetic resonance spectroscopy ((1)H-MRS) to quantify glutamate and other neurometabolites in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of 22 adults with 22q11DS (22q11DS SCZ+) and without (22q11DS SCZ-) schizophrenia and 23 age-matched healthy controls. Also, plasma proline levels were determined in the 22q11DS group. RESULTS: We found significantly increased concentrations of glutamate and myo-inositol in the hippocampal region of 22q11DS SCZ+ compared to 22q11DS SCZ-. There were no significant differences in levels of plasma proline between 22q11DS SCZ+ and 22q11DS SCZ-. There was no relationship between plasma proline and cerebral glutamate in 22q11DS. CONCLUSION: This is the first in vivo(1)H-MRS study in 22q11DS. Our results suggest vulnerability of the hippocampus in the psychopathology of 22q11DS SCZ+. Altered hippocampal glutamate and myo-inositol metabolism may partially explain the psychotic symptoms and cognitive impairments seen in this group of patients

    Deficient NRG1-ERBB signaling alters social approach: relevance to genetic mouse models of schizophrenia

    Get PDF
    Growth factor Neuregulin 1 (NRG1) plays an essential role in development and organization of the cerebral cortex. NRG1 and its receptors, ERBB3 and ERBB4, have been implicated in genetic susceptibility for schizophrenia. Disease symptoms include asociality and altered social interaction. To investigate the role of NRG1-ERBB signaling in social behavior, mice heterozygous for an Nrg1 null allele (Nrg1+/−), and mice with conditional ablation of Erbb3 or Erbb4 in the central nervous system, were evaluated for sociability and social novelty preference in a three-chambered choice task. Results showed that deficiencies in NRG1 or ERBB3 significantly enhanced sociability. All of the mutant groups demonstrated a lack of social novelty preference, in contrast to their respective wild-type controls. Effects of NRG1, ERBB3, or ERBB4 deficiency on social behavior could not be attributed to general changes in anxiety-like behavior, activity, or loss of olfactory ability. Nrg1+/− pups did not exhibit changes in isolation-induced ultrasonic vocalizations, a measure of emotional reactivity. Overall, these findings provide evidence that social behavior is mediated by NRG1-ERBB signaling
    corecore