737 research outputs found

    A cluster randomized trial evaluating electronic prescribing in an ambulatory care setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medication errors, adverse drug events and potential adverse drug events are common and serious in terms of the harms and costs that they impose on the health system and those who use it. Errors resulting in preventable adverse drug events have been shown to occur most often at the stages of ordering and administration. This paper describes the protocol for a pragmatic trial of electronic prescribing to reduce prescription error. The trial was designed to overcome the limitations associated with traditional study design.</p> <p>Design</p> <p>This study was designed as a 65-week, cluster randomized, parallel study.</p> <p>Methods</p> <p>The trial was conducted within ambulatory outpatient clinics in an academic tertiary care centre in Ontario, Canada. The electronic prescribing software for the study is a Canadian electronic prescribing software package which provides physician prescription entry with decision support at the point of care. Using a handheld computer (PDA) the physician selects medications using an error minimising menu-based pick list from a comprehensive drug database, create specific prescription instructions and then transmit the prescription directly and electronically to a participating pharmacy via facsimile or to the physician's printer using local area wireless technology. The unit of allocation and randomization is by 'week', i.e. the system is "on" or "off" according to the randomization scheme and the unit of analysis is the prescription, with adjustment for clustering of patients within practitioners.</p> <p>Discussion</p> <p>This paper describes the protocol for a pragmatic cluster randomized trial of point-of-care electronic prescribing, which was specifically designed to overcome the limitations associated with traditional study design.</p> <p>Trial Registration</p> <p>This trial has been registered with clinicaltrials.gov (ID: NCT00252395)</p

    A photosynthesis-specific rubredoxin-like protein is required for efficient association of the D1 and D2 proteins during the initial steps of photosystem II assembly

    Get PDF
    Oxygenic photosynthesis relies on accessory factors to promote the assembly and maintenance of the photosynthetic apparatus in the thylakoid membranes. The highly conserved membrane-bound rubredoxin-like protein RubA has previously been implicated in the accumulation of both photosystem I (PSI) and photosystem II (PSII) but its mode of action remains unclear. Here we show that RubA in the cyanobacterium Synechocystis sp. PCC 6803 is required for photoautotrophic growth in fluctuating light and acts early in PSII biogenesis by promoting the formation of the heterodimeric D1/D2 reaction center complex, the site of primary photochemistry. We find that RubA, like the accessory factor Ycf48, is a component of the initial D1 assembly module as well as larger PSII assembly intermediates and that the redox-responsive rubredoxinlike domain is located on the cytoplasmic surface of PSII complexes. Fusion of RubA to Ycf48 still permits normal PSII assembly suggesting a spatiotemporal proximity of both proteins during their action. RubA is also important for the accumulation of PSI but this is an indirect effect stemming from the downregulation of light-dependent chlorophyll biosynthesis induced by PSII deficiency. Overall our data support the involvement of RubA in the redox control of PSII biogenesis

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    30 years of collaboration

    Get PDF
    We highlight some of the most important cornerstones of the long standing and very fruitful collaboration of the Austrian Diophantine Number Theory research group and the Number Theory and Cryptography School of Debrecen. However, we do not plan to be complete in any sense but give some interesting data and selected results that we find particularly nice. At the end we focus on two topics in more details, namely a problem that origins from a conjecture of Rényi and Erdős (on the number of terms of the square of a polynomial) and another one that origins from a question of Zelinsky (on the unit sum number problem). This paper evolved from a plenary invited talk that the authors gaveat the Joint Austrian-Hungarian Mathematical Conference 2015, August 25-27, 2015 in Győr (Hungary)

    Nuclear and Chloroplast Microsatellites Show Multiple Introductions in the Worldwide Invasion History of Common Ragweed, Ambrosia artemisiifolia

    Get PDF
    BACKGROUND: Ambrosia artemisiifolia is a North American native that has become one of the most problematic invasive plants in Europe and Asia. We studied its worldwide population genetic structure, using both nuclear and chloroplast microsatellite markers and an unprecedented large population sampling. Our goals were (i) to identify the sources of the invasive populations; (ii) to assess whether all invasive populations were founded by multiple introductions, as previously found in France; (iii) to examine how the introductions have affected the amount and structure of genetic variation in Europe; (iv) to document how the colonization of Europe proceeded; (v) to check whether populations exhibit significant heterozygote deficiencies, as previously observed. PRINCIPAL FINDINGS: We found evidence for multiple introductions of A. artemisiifolia, within regions but also within populations in most parts of its invasive range, leading to high levels of diversity. In Europe, introductions probably stem from two different regions of the native area: populations established in Central Europe appear to have originated from eastern North America, and Eastern European populations from more western North America. This may result from differential commercial exchanges between these geographic regions. Our results indicate that the expansion in Europe mostly occurred through long-distance dispersal, explaining the absence of isolation by distance and the weak influence of geography on the genetic structure in this area in contrast to the native range. Last, we detected significant heterozygote deficiencies in most populations. This may be explained by partial selfing, biparental inbreeding and/or a Wahlund effect and further investigation is warranted. CONCLUSIONS: This insight into the sources and pathways of common ragweed expansion may help to better understand its invasion success and provides baseline data for future studies on the evolutionary processes involved during range expansion in novel environments

    Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria

    Get PDF
    The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour

    Mesenchymal stromal cells inhibit NLRP3 inflammasome activation in a model of Coxsackievirus B3-induced inflammatory cardiomyopathy

    Get PDF
    Inflammation in myocarditis induces cardiac injury and triggers disease progression to heart failure. NLRP3 inflammasome activation is a newly identified amplifying step in the pathogenesis of myocarditis. We previously have demonstrated that mesenchymal stromal cells (MSC) are cardioprotective in Coxsackievirus B3 (CVB3)-induced myocarditis. In this study, MSC markedly inhibited left ventricular (LV) NOD2, NLRP3, ASC, caspase-1, IL-1β, and IL-18 mRNA expression in CVB3-infected mice. ASC protein expression, essential for NLRP3 inflammasome assembly, increased upon CVB3 infection and was abrogated in MSC-treated mice. Concomitantly, CVB3 infection in vitro induced NOD2 expression, NLRP3 inflammasome activation and IL-1β secretion in HL-1 cells, which was abolished after MSC supplementation. The inhibitory effect of MSC on NLRP3 inflammasome activity in HL-1 cells was partly mediated via secretion of the anti-oxidative protein stanniocalcin-1. Furthermore, MSC application in CVB3-infected mice reduced the percentage of NOD2-, ASC-, p10- and/or IL-1β- positive splenic macrophages, natural killer cells, and dendritic cells. The suppressive effect of MSC on inflammasome activation was associated with normalized expression of prominent regulators of myocardial contractility and fibrosis to levels comparable to control mice. In conclusion, MSC treatment in myocarditis could be a promising strategy limiting the adverse consequences of cardiac and systemic NLRP3 inflammasome activation
    corecore