5,041 research outputs found
Shear waves induced by moving needle in MR Elastography
Magnetic Resonance Elastography (MRE) is a phase contrast-based method for observing shear wave propagation in a material to determine its stiffness. The objective of this study was to determine whether shear waves suitable for MRE can be induced using a moving acupuncture needle. Tissue-simulating bovine gel phantom and a 0.4mm diameter acupuncture needle were used in the experiment. The results showed that observable shear waves could be induced in the gel phantom by cyclic needle motion. The observed wavelength varied with excitation frequency, as expected. Generating shear waves using moving needles may be a useful tool to study the basic mechanism of acupuncture with MRE. Further study will be conducted to observe the wave motion in inhomogeneous media and acupuncture-induced effects in invivo studies.published_or_final_versio
Antenatal biological models in the characterisation and research of congenital lower urinary tract disorders
Congenital lower urinary tract disorders are a family of diseases affecting both urinary storage and voiding as well as upstream kidney function. Current treatments include surgical reconstruction but many children still fail to achieve urethral continence or progress to chronic kidney disease. New therapies can only be achieved through undertaking research studies to enhance our understanding of congenital lower urinary tract disorders. Animal models form a critical component of this research, a corner of the triangle composed of human in-vitro studies and clinical research. We describe the current animal models for two rare congenital bladder disorders, posterior urethral valves (PUV) and bladder exstrophy (BE). We highlight important areas for researchers to consider when deciding which animal model to use to address particular research questions and outline the strengths and weaknesses of current models available for PUV and BE. Finally, we present ideas for refining animal models for PUV and BE in the future to stimulate future researchers and help them formulate their thinking when working in this field
Expression of tung tree diacylglycerol acyltransferase 1 in E. coli
<p>Abstract</p> <p>Background</p> <p>Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in <it>E. coli </it>had not been reported because DGAT1s are integral membrane proteins and difficult to express and purify. The objective of this study was to establish a procedure for expressing full-length DGAT1 in <it>E. coli</it>.</p> <p>Results</p> <p>An expression plasmid containing the open reading frame for tung tree (<it>Vernicia fordii</it>) DGAT1 fused to maltose binding protein and poly-histidine affinity tags was constructed and expressed in <it>E. coli </it>BL21(DE3). Immunoblotting showed that the recombinant DGAT1 (rDGAT1) was expressed, but mostly targeted to the membranes and insoluble fractions. Extensive degradation also occurred. Nonetheless, the fusion protein was partially purified from the soluble fraction by Ni-NTA and amylose resin affinity chromatography. Multiple proteins co-purified with DGAT1 fusion protein. These fractions appeared yellow in color and contained fatty acids. The rDGAT1 was solubilized from the insoluble fraction by seven detergents and urea, with SDS and Triton X-100 being the most effective detergents. The solubilized rDGAT1 was partially purified by Ni-NTA affinity chromatography. PreScission protease digestion confirmed the identity of rDGAT1 and showed extensive precipitation following Ni-NTA affinity purification.</p> <p>Conclusions</p> <p>This study reports the first procedure for expressing full-length DGAT1 from any species using a bacterial expression system. The results suggest that recombinant DGAT1 is degraded extensively from the carboxyl terminus and associated with other proteins, lipids, and membranes.</p
Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences
We propose a fully automatic method for fitting a 3D morphable model to
single face images in arbitrary pose and lighting. Our approach relies on
geometric features (edges and landmarks) and, inspired by the iterated closest
point algorithm, is based on computing hard correspondences between model
vertices and edge pixels. We demonstrate that this is superior to previous work
that uses soft correspondences to form an edge-derived cost surface that is
minimised by nonlinear optimisation.Comment: To appear in ACCV 2016 Workshop on Facial Informatic
Quantifying Robotic Swarm Coverage
In the field of swarm robotics, the design and implementation of spatial
density control laws has received much attention, with less emphasis being
placed on performance evaluation. This work fills that gap by introducing an
error metric that provides a quantitative measure of coverage for use with any
control scheme. The proposed error metric is continuously sensitive to changes
in the swarm distribution, unlike commonly used discretization methods. We
analyze the theoretical and computational properties of the error metric and
propose two benchmarks to which error metric values can be compared. The first
uses the realizable extrema of the error metric to compute the relative error
of an observed swarm distribution. We also show that the error metric extrema
can be used to help choose the swarm size and effective radius of each robot
required to achieve a desired level of coverage. The second benchmark compares
the observed distribution of error metric values to the probability density
function of the error metric when robot positions are randomly sampled from the
target distribution. We demonstrate the utility of this benchmark in assessing
the performance of stochastic control algorithms. We prove that the error
metric obeys a central limit theorem, develop a streamlined method for
performing computations, and place the standard statistical tests used here on
a firm theoretical footing. We provide rigorous theoretical development,
computational methodologies, numerical examples, and MATLAB code for both
benchmarks.Comment: To appear in Springer series Lecture Notes in Electrical Engineering
(LNEE). This book contribution is an extension of our ICINCO 2018 conference
paper arXiv:1806.02488. 27 pages, 8 figures, 2 table
A perspective on using experiment and theory to identify design principles in dye-sensitized solar cells
Dye-sensitized solar cells (DSCs) have been the subject of wide-ranging studies for many
years because of their potential for large-scale manufacturing using roll-to-roll processing
allied to their use of earth abundant raw materials. Two main challenges exist for DSC
devices to achieve this goal; uplifting device efficiency from the 12 to 14% currently
achieved for laboratory-scale ‘hero’ cells and replacement of the widely-used liquid
electrolytes which can limit device lifetimes. To increase device efficiency requires optimized
dye injection and regeneration, most likely from multiple dyes while replacement
of liquid electrolytes requires solid charge transporters (most likely hole transport materials
– HTMs). While theoretical and experimental work have both been widely applied to
different aspects of DSC research, these approaches are most effective when working in
tandem. In this context, this perspective paper considers the key parameters which
influence electron transfer processes in DSC devices using one or more dye molecules
and how modelling and experimental approaches can work together to optimize electron
injection and dye regeneration.
This paper provides a perspective that theory and experiment are best used in tandem to study
DSC device
Structure-Function Analysis of Diacylglycerol Acyltransferase Sequences from 70 Organisms
<p>Abstract</p> <p>Background</p> <p>Diacylglycerol acyltransferase families (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Understanding the roles of DGATs will help to create transgenic plants with value-added properties and provide clues for therapeutic intervention for obesity and related diseases. The objective of this analysis was to identify conserved sequence motifs and amino acid residues for better understanding of the structure-function relationship of these important enzymes.</p> <p>Results</p> <p>117 DGAT sequences from 70 organisms including plants, animals, fungi and human are obtained from database search using tung tree DGATs. Phylogenetic analysis separates these proteins into DGAT1 and DGAT2 subfamilies. These DGATs are integral membrane proteins with more than 40% of the total amino acid residues being hydrophobic. They have similar properties and amino acid composition except that DGAT1s are approximately 20 kDa larger than DGAT2s. DGAT1s and DGAT2s have 41 and 16 completely conserved amino acid residues, respectively, although only two of them are shared by all DGATs. These residues are distributed in 7 and 6 sequence blocks for DGAT1s and DGAT2s, respectively, and located at the carboxyl termini, suggesting the location of the catalytic domains. These conserved sequence blocks do not contain the putative neutral lipid-binding domain, mitochondrial targeting signal, or ER retrieval motif. The importance of conserved residues has been demonstrated by site-directed and natural mutants.</p> <p>Conclusions</p> <p>This study has identified conserved sequence motifs and amino acid residues in all 117 DGATs and the two subfamilies. None of the completely conserved residues in DGAT1s and DGAT2s is present in recently reported isoforms in the multiple sequences alignment, raising an important question how proteins with completely different amino acid sequences could perform the same biochemical reaction. The sequence analysis should facilitate studying the structure-function relationship of DGATs with the ultimate goal to identify critical amino acid residues for engineering superb enzymes in metabolic engineering and selecting enzyme inhibitors in therapeutic application for obesity and related diseases.</p
Social Determinants of Community Health Services Utilization among the Users in China: A 4-Year Cross-Sectional Study
Background To identify social factors determining the frequency of community health service (CHS) utilization among CHS users in China. Methods Nationwide cross-sectional surveys were conducted in 2008, 2009, 2010, and 2011. A total of 86,116 CHS visitors selected from 35 cities were interviewed. Descriptive analysis and multinomial logistic regression analysis were employed to analyze characteristics of CHS users, frequency of CHS utilization, and the socio-demographic and socio-economic factors influencing frequency of CHS utilization. Results Female and senior CHS clients were more likely to make 3–5 and ≥6 CHS visits (as opposed to 1–2 visits) than male and young clients, respectively. CHS clients with higher education were less frequent users than individuals with primary education or less in 2008 and 2009; in later surveys, CHS clients with higher education were the more frequent users. The association between frequent CHS visits and family income has changed significantly between 2008 and 2011. In 2011, income status did not have a discernible effect on the likelihood of making ≥6 CHS visits, and it only had a slight effect on making 3–5 CHS visits. Conclusion CHS may play an important role in providing primary health care to meet the demands of vulnerable populations in China. Over time, individuals with higher education are increasingly likely to make frequent CHS visits than individuals with primary school education or below. The gap in frequency of CHS utilization among different economic income groups decreased from 2008 to 2011
- …