1,126 research outputs found

    Bridging the gap between models and measurements of peat hydraulic conductivity

    Get PDF
    Peat saturated hydraulic conductivity, Ksat, declines strongly with increasing degree of decomposition, providing a potentially important negative ecohydrological feedback that may buffer peatlands from climate-induced drying. However, the quantitative nature of this relationship is poorly understood. We measured downcore changes in Ksat and carbon-to-nitrogen concentration quotients (C/N) in fourteen shallow (~0.5 m deep, 0.1 m diameter) peat cores from a Swedish raised bog. We used the C/N measurements to approximate the fraction of original peat mass remaining. A linear mixed effects (LME) model predicts log10(Ksat) from i) our C/N-derived estimate of fractional remaining mass; ii) depth; iii) microhabitat (hummock, hollow); and iv) location (treeless bog center, treed bog margin). The LME model indicated no significant random effects or interactions between predictors, so we derived a non-linear multiple regression (NLMR) model to predict Ksat on its original scale. Both LME and NLMR models predict that Ksat decreases exponentially with depth and that Ksat is lower beneath hollows than beneath hummocks for equivalent depths below the surface. Fractional remaining mass was an important predictor in the LME model, but not in the NLMR model. The distinction between central and marginal areas of the bog was not an important predictor. We demonstrate for the first time that the relationship between fractional remaining mass and Ksat is log-linear, and suggest revisions that should be made to peatland development models. In particular, depth – usually ignored in modeling studies – exerted a strong control over Ksat ndependently of decomposition and should be included explicitly in model algorithms

    Modeling photoinhibition-driven bleaching in Scleractinian coral as a function of light, temperature, and heterotrophy

    Full text link
    It has been proposed that corals with symbiotic algae (Symbiodinium) bleach under thermal stress due to temperature-dependent inactivation of the Rubisco protein that impairs CO2 uptake, causing a backlog of electrons that result in the formation of damaging Reactive Oxygen Species. We present a numerical model of this mechanism of photoinhibition for symbiotic algae residing within coral tissue. The resulting rate of bleaching depended on temperature, light intensity, and the rate of heterotrophic feeding. The model was validated using three independently published experimental data sets. The model was capable of capturing both the diurnal change in the state of the photosystem, as well as changes in the symbiont population and the coral host caused by different temperature, light, and feeding treatments. Elevated temperatures and light led to a degradation of the photosystem and the expulsion of symbiont cells. If the coral fed heterotrophically, this degradation of the photosynthetic apparatus was reduced, but still a clear decrease in maximum quantum yield (Fv: Fm) and cell numbers was observed when the coral was exposed to elevated temperature. The reduction in chlorophyll content of cells at elevated temperatures and light was compared with the observational bleaching index Degree Heating Days (DHD). As quantified by DHD, the model was found to bleach under similar thermal stress regimes as field studies, except under elevated heterotrophic feeding conditions, which resulted in reduced severity of bleaching over a 90 d period. © 2014, by the Association for the Sciences of Limnology and Oceanography, Inc

    Microform-scale variations in peatland permeability and their ecohydrological implications

    Get PDF
    1. The acrotelm-catotelm model of peatland hydrological and biogeochemical processes posits that the permeability of raised bogs is largely homogenous laterally but varies strongly with depth through the soil profile; uppermost peat layers are highly permeable while deeper layers are, effectively, impermeable. 2. We measured down-core changes in peat permeability, plant macrofossil assemblages, dry bulk density and degree of humification beneath two types of characteristic peatland microform – ridges and hollows – at a raised bog in Wales. Six 1424 C dates were also collected for one hollow and an adjacent ridge. 3. Contrary to the acrotelm-catotelm model, we found that deeper peat can be as highly permeable as near-surface peat and that its permeability can vary by more than an order of magnitude between microforms over horizontal distances of 1-5 metres. 4. Our palaeo-ecological data paint a complicated picture of microform persistence. Some microforms can remain in the same position on a bog for millennia, growing vertically upwards as the bog grows. However, adjacent areas on the bog (< 10 m distant) show switches between microform type over time, indicating a lack of persistence. 5. Synthesis. We suggest that the acrotelm-catotelm model should be used cautiously; spatial variations in peatland permeability do not fit the simple patterns suggested by the model. To understand how peatlands as a whole function both hydrologically and ecologically it is necessary to understand how patterns of peat physical properties and peatland vegetation develop and persist

    EnRoot: a narrow, inexpensive and partially 3D-printable minirhizotron for imaging fine root production

    Get PDF
    Background Fine root production is one of the least well understood components of the carbon cycle in terrestrial ecosystems. Minirhizotrons allow accurate and non-destructive sampling of fine root production. Small and large scale studies across a range of ecosystems are needed to have baseline data on fine root production and further assess the impact of global change upon it; however, the expense and the low adaptability of minirhizotrons prevent such data collection, in worldwide distributed sampling schemes, in low-income countries and in some ecosystems (e.g. tropical forested wetlands). Results We present EnRoot, a narrow minirhizotron of 25 mm diameter, that is partially 3D printable. EnRoot is inexpensive (€150), easy to construct (no prior knowledge required) and adapted to a range of ecosystems including tropical forested wetlands (e.g. mangroves, peatlands). We tested EnRoot’s accuracy and precision for measuring fine root length and diameter, and it yielded Lin’s concordance correlation coefficient values of 0.95 for root diameter and 0.92 for length. As a proof of concept, we tested EnRoot in a mesocosm study, and in the field in a tropical mangrove. EnRoot proved its capacity to capture the development of roots of a legume (Medicago sativa) and a mangrove species (seedlings of Rhizophora mangle) in laboratory mesocosms. EnRoot’s field installation was possible in the root-dense tropical mangrove because its narrow diameter allowed it to be installed between larger roots and because it is fully waterproof. EnRoot compares favourably with commercial minirhizotrons, and can image roots as small as 56 µm. Conclusion EnRoot removes barriers to the extensive use of minirhizotrons by being low-cost, easy to construct and adapted to a wide range of ecosystem. It opens the doors to worldwide distributed minirhizotron studies across an extended range of ecosystems with the potential to fill knowledge gaps surrounding fine root production

    Misinterpreting carbon accumulation rates in records from near-surface peat

    Get PDF
    Peatlands are globally important stores of carbon (C) that contain a record of how their rates of C accumulation have changed over time. Recently, near-surface peat has been used to assess the effect of current land use practices on C accumulation rates in peatlands. However, the notion that accumulation rates in recently formed peat can be compared to those from older, deeper, peat is mistaken – continued decomposition means that the majority of newly added material will not become part of the long-term C store. Palaeoecologists have known for some time that high apparent C accumulation rates in recently formed peat are an artefact and take steps to account for it. Here we show, using a model, how the artefact arises. We also demonstrate that increased C accumulation rates in near-surface peat cannot be used to infer that a peatland as a whole is accumulating more C – in fact the reverse can be true because deep peat can be modified by events hundreds of years after it was formed. Our findings highlight that care is needed when evaluating recent C addition to peatlands especially because these interpretations could be wrongly used to inform land use policy and decisions

    Controls on Near‐Surface Hydraulic Conductivity in a Raised Bog

    Get PDF
    Shallow water tables protect northern peatlands and their important carbon stocks from aerobic decomposition. Hydraulic conductivity, K, is a key control on water tables. The controls on K, particularly in degraded and restored peatlands, remain a subject of ongoing research. We took 29 shallow (~50 cm) peat cores from an estuarine raised bog in Wales, UK. Parts of the bog are in close‐to‐natural condition, while other areas have undergone shallow peat cutting for fuel and drainage, followed by restoration through ditch blocking. In the laboratory we measured horizontal (Kh) and vertical (Kv) hydraulic conductivity. We fitted linear multiple regression models to describe log10‐transformed Kh and Kv on the basis of simple, easy‐to‐measure predictors. Dry bulk density and degree of decomposition were the strongest predictors of Kh and Kv. Perhaps surprisingly, the independent effect of hummocks was to produce higher‐Kv peat than in lawns; while the independent effect of restored diggings was to produce higher‐K peat than in uncut locations. Our models offer high explanatory power for Kh (adjusted r2 = 0.740) and Kv (adjusted r2 = 0.787). Our findings indicate that generalizable predictive models of peat K, similar to pedotransfer functions for mineral soils, may be attainable. Kh and Kv possess subtly different controls that are consistent with the contrasting roles of these two properties in peatland water budgets. Our near‐surface samples show no evidence for the low‐K marginal peat previously observed in deeper layers at the same site, indicating that such structures may be less important than previously believed

    Lifetime testing UV LEDs for use in the LISA charge management system

    Get PDF
    As a future charge management light source, UV light-emitting diodes (UV LEDs) offer far superior performance in a range of metrics compared to the mercury lamps used in the past. As part of a qualification program a number of short wavelength UV LEDs have been subjected to a series of lifetime tests for potential use on the laser interferometer space antenna (LISA) mission. These tests were performed at realistic output levels for both fast and continuous discharging in either a DC or pulsed mode of operation and included a DC fast discharge test spanning 50 days, a temperature dependent pulsed fast discharge test spanning 21 days and a pulsed continuous discharge test spanning 507 days. Two types of UV LED have demonstrated lifetimes equivalent to over 25 years of realistic mission usage with one type providing a baseline for LISA and the other offering a backup solution

    The exposure of the Great Barrier Reef to ocean acidification

    Full text link
    © 2016, Nature Publishing Group. All rights reserved. The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report

    Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

    Get PDF
    Background: \ud Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia.\ud \ud Methodology/Principal Findings: \ud Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; p,0.001). Bleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia) where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died.\ud \ud Conclusions/Significance: \ud The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments

    Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    Get PDF
    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations
    corecore