3,342 research outputs found
Eye movement patterns during the recognition of three-dimensional objects: Preferential fixation of concave surface curvature minima
This study used eye movement patterns to examine how high-level shape information is used during 3D object recognition. Eye movements were recorded while observers either actively memorized or passively viewed sets of novel objects, and then during a subsequent recognition memory task. Fixation data were contrasted against different algorithmically generated models of shape analysis based on: (1) regions of internal concave or (2) convex surface curvature discontinuity or (3) external bounding contour. The results showed a preference for fixation at regions of internal local features during both active memorization and passive viewing but also for regions of concave surface curvature during the recognition task. These findings provide new evidence supporting the special functional status of local concave discontinuities in recognition and show how studies of eye movement patterns can elucidate shape information processing in human vision
Atomic Scale Dynamics Drive Brain-like Avalanches in Percolating Nanostructured Networks.
Self-assembled networks of nanoparticles and nanowires have recently emerged as promising systems for brain-like computation. Here, we focus on percolating networks of nanoparticles which exhibit brain-like dynamics. We use a combination of experiments and simulations to show that the brain-like network dynamics emerge from atomic-scale switching dynamics inside tunnel gaps that are distributed throughout the network. The atomic-scale dynamics emulate leaky integrate and fire (LIF) mechanisms in biological neurons, leading to the generation of critical avalanches of signals. These avalanches are quantitatively the same as those observed in cortical tissue and are signatures of the correlations that are required for computation. We show that the avalanches are associated with dynamical restructuring of the networks which self-tune to balanced states consistent with self-organized criticality. Our simulations allow visualization of the network states and detailed mechanisms of signal propagation
Ultraviolet asymptotics of scalar and pseudoscalar correlators in hot Yang-Mills theory
Inspired by recent lattice measurements, we determine the short-distance (a
> omega >> pi T) asymptotics
of scalar (trace anomaly) and pseudoscalar (topological charge density)
correlators at 2-loop order in hot Yang-Mills theory. The results are expressed
in the form of an Operator Product Expansion. We confirm and refine the
determination of a number of Wilson coefficients; however some discrepancies
with recent literature are detected as well, and employing the correct values
might help, on the qualitative level, to understand some of the features
observed in the lattice measurements. On the other hand, the Wilson
coefficients show slow convergence and it appears uncertain whether this
approach can lead to quantitative comparisons with lattice data. Nevertheless,
as we outline, our general results might serve as theoretical starting points
for a number of perhaps phenomenologically more successful lines of
investigation.Comment: 27 pages. v2: minor improvements, published versio
The forecasting of dynamical Ross River virus outbreaks: Victoria, Australia
Ross River virus (RRV) is Australia’s most epidemiologically important mosquito-borne disease.During RRV epidemics in the State of Victoria (such as 2010/11 and 2016/17) notifications canaccount for up to 30% of national RRV notifications. However, little is known about factors which canforecast RRV transmission in Victoria. We aimed to understand factors associated with RRVtransmission in epidemiologically important regions of Victoria and establish an early warningforecast system. We developed negative binomial regression models to forecast human RRVnotifications across 11 Local Government Areas (LGAs) using climatic, environmental, andoceanographic variables. Data were collected from July 2008 to June 2018. Data from July 2008 toJune 2012 were used as a training data set, while July 2012 to June 2018 were used as a testing dataset. Evapotranspiration and precipitation were found to be common factors for forecasting RRVnotifications across sites. Several site-specific factors were also important in forecasting RRVnotifications which varied between LGA. From the 11 LGAs examined, nine experienced an outbreakin 2011/12 of which the models for these sites were a good fit. All 11 LGAs experienced an outbreakin 2016/17, however only six LGAs could predict the outbreak using the same model. We documentsimilarities and differences in factors useful for forecasting RRV notifications across Victoria anddemonstrate that readily available and inexpensive climate and environmental data can be used to predict epidemic periods in some areas. Furthermore, we highlight in certain regions the complexityof RRV transmission where additional epidemiological information is needed to accurately predictRRV activity. Our findings have been applied to produce a Ross River virus Outbreak SurveillanceSystem (ROSS) to aid in public health decision making in Victoria
Recommended from our members
The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola
Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in the common bean, Phaseolus vulgaris. P. syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene avrPphB (syn. hopAR1), which resides on PPHGI-1, a 106 kb genomic island. Loss of PPHGI-1 from P. syringae pv. phaseolicola 1302A following exposure to the hypersensitive resistance response (HR) leads to the evolution of strains with altered virulence. Here we have used fluorescent protein reporter systems to gain insight into the mobility of PPHGI-1. Confocal imaging of dual-labelled P. syringae pv. phaseolicola 1302A strain, F532 (dsRFP in chromosome and eGFP in PPHGI-1), revealed loss of PPHGI-1::eGFP encoded fluorescence during plant infection and when grown in vitro on extracted leaf apoplastic fluids. Fluorescence-activated cell sorting (FACS) of fluorescent and non-fluorescent PPHGI-1::eGFP F532 populations showed that cells lost fluorescence not only when the GI was deleted, but also when it had excised and was present as a circular episome. In addition to reduced expression of eGFP, quantitative PCR on sub-populations separated by FACS showed that transcription of other genes on PPHGI-1 (avrPphB and xerC) was also greatly reduced in F532 cells harbouring the excised PPHGI-1::eGFP episome. Our results show how virulence determinants located on mobile pathogenicity islands may be hidden from detection by host surveillance systems through the suppression of gene expression in the episomal state
The Pure Virtual Braid Group Is Quadratic
If an augmented algebra K over Q is filtered by powers of its augmentation
ideal I, the associated graded algebra grK need not in general be quadratic:
although it is generated in degree 1, its relations may not be generated by
homogeneous relations of degree 2. In this paper we give a sufficient criterion
(called the PVH Criterion) for grK to be quadratic. When K is the group algebra
of a group G, quadraticity is known to be equivalent to the existence of a (not
necessarily homomorphic) universal finite type invariant for G. Thus the PVH
Criterion also implies the existence of such a universal finite type invariant
for the group G. We apply the PVH Criterion to the group algebra of the pure
virtual braid group (also known as the quasi-triangular group), and show that
the corresponding associated graded algebra is quadratic, and hence that these
groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies
corrected, reflecting suggestions made by the referee of the published
version of the pape
Detecting the direction of a signal on high-dimensional spheres: Non-null and Le Cam optimality results
We consider one of the most important problems in directional statistics,
namely the problem of testing the null hypothesis that the spike direction
of a Fisher-von Mises-Langevin distribution on the -dimensional
unit hypersphere is equal to a given direction . After a reduction
through invariance arguments, we derive local asymptotic normality (LAN)
results in a general high-dimensional framework where the dimension goes
to infinity at an arbitrary rate with the sample size , and where the
concentration behaves in a completely free way with , which
offers a spectrum of problems ranging from arbitrarily easy to arbitrarily
challenging ones. We identify various asymptotic regimes, depending on the
convergence/divergence properties of , that yield different
contiguity rates and different limiting experiments. In each regime, we derive
Le Cam optimal tests under specified and we compute, from the Le Cam
third lemma, asymptotic powers of the classical Watson test under contiguous
alternatives. We further establish LAN results with respect to both spike
direction and concentration, which allows us to discuss optimality also under
unspecified . To investigate the non-null behavior of the Watson test
outside the parametric framework above, we derive its local asymptotic powers
through martingale CLTs in the broader, semiparametric, model of rotationally
symmetric distributions. A Monte Carlo study shows that the finite-sample
behaviors of the various tests remarkably agree with our asymptotic results.Comment: 47 pages, 4 figure
On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures
This note, mostly expository, is devoted to Poincar{\'e} and log-Sobolev
inequalities for a class of Boltzmann-Gibbs measures with singular interaction.
Such measures allow to model one-dimensional particles with confinement and
singular pair interaction. The functional inequalities come from convexity. We
prove and characterize optimality in the case of quadratic confinement via a
factorization of the measure. This optimality phenomenon holds for all beta
Hermite ensembles including the Gaussian unitary ensemble, a famous exactly
solvable model of random matrix theory. We further explore exact solvability by
reviewing the relation to Dyson-Ornstein-Uhlenbeck diffusion dynamics admitting
the Hermite-Lassalle orthogonal polynomials as a complete set of
eigenfunctions. We also discuss the consequence of the log-Sobolev inequality
in terms of concentration of measure for Lipschitz functions such as maxima and
linear statistics.Comment: Minor improvements. To appear in Geometric Aspects of Functional
Analysis -- Israel Seminar (GAFA) 2017-2019", Lecture Notes in Mathematics
225
Urban energy consumption and CO2 emissions in Beijing: current and future
This paper calculates the energy consumption and CO2 emissions of Beijing over 2005–2011 in light of the Beijing’s energy balance table and the carbon emission coefficients of IPCC. Furthermore, based on a series of energy conservation planning program issued in Beijing, the Long-range Energy Alternatives Planning System (LEAP)-BJ model is developed to study the energy consumption and CO2 emissions of Beijing’s six end-use sectors and the energy conversion sector over 2012–2030 under the BAU scenario and POL scenario. Some results are found in this research: (1) During 2005–2011, the energy consumption kept increasing, while the total CO2 emissions fluctuated obviously in 2008 and 2011. The energy structure and the industrial structure have been optimized to a certain extent. (2) If the policies are completely implemented, the POL scenario is projected to save 21.36 and 35.37 % of the total energy consumption and CO2 emissions than the BAU scenario during 2012 and 2030. (3) The POL scenario presents a more optimized energy structure compared with the BAU scenario, with the decrease of coal consumption and the increase of natural gas consumption. (4) The commerce and service sector and the energy conversion sector will become the largest contributor to energy consumption and CO2 emissions, respectively. The transport sector and the industrial sector are the two most potential sectors in energy savings and carbon reduction. In terms of subscenarios, the energy conservation in transport (TEC) is the most effective one. (5) The macroparameters, such as the GDP growth rate and the industrial structure, have great influence on the urban energy consumption and carbon emissions
The Bulk Channel in Thermal Gauge Theories
We investigate the thermal correlator of the trace of the energy-momentum
tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral
function in that channel, whose low-frequency part determines the bulk
viscosity. We focus on the thermal modification of the spectral function,
. Using the operator-product expansion we give
the high-frequency behavior of this difference in terms of thermodynamic
potentials. We take into account the presence of an exact delta function
located at the origin, which had been missed in previous analyses. We then
combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean
correlator to determine the intervals of frequency where the spectral density
is enhanced or depleted by thermal effects. We find evidence that the thermal
spectral density is non-zero for frequencies below the scalar glueball mass
and is significantly depleted for .Comment: (1+25) pages, 6 figure
- …