82 research outputs found

    Multimodal (EEG-fMRI) functional connectivity study of levodopa effect in Parkinson’s disease

    Get PDF
    Aim: To assess if the intake of levodopa in patients with Parkinson’s Disease (PD) changes cerebral connectivity, as revealed by simultaneous recording of hemodynamic (functional MRI, or fMRI) and electric (electroencephalogram, EEG) signals. Particularly, we hypothesize that the strongest changes in FC will involve the motor network, which is the most impaired in PD. Methods: Eight patients with diagnosis of PD “probable”, therapy with levodopa exclusively, normal cognitive and affective status, were included. Exclusion criteria were: moderate-severe rest tremor, levodopa induced dyskinesia, evidence of gray or white matter abnormalities on structural MRI. Scalp EEG (64 channels) were acquired inside the scanner (1.5 Tesla) before and after the intake of levodopa. fMRI functional connectivity was computed from four regions of interest: right and left supplementary motor area (SMA) and right and left precentral gyrus (primary motor cortex). Weighted partial directed coherence (w-PDC) was computed in the inverse space after the removal of EEG gradient and cardioballistic artifacts. Results and discussion: fMRI group analysis shows that the intake of levodopa increases hemodynamic functional connectivity among the SMAs / primary motor cortex and: sensory-motor network itself, attention network and default mode network. w-PDC analysis shows that EEG connectivity among regions of the motor network has the tendency to decrease after the intake the levodopa; furthermore, regions belonging to the DMN have the tendency to increase their outflow toward the rest of the brain. These findings, even if in a small sample of patients, suggest that other resting state physiological functional networks, beyond the motor one, are affected in patients with PD. The behavioral and cognitive tasks corresponding to the affected networks could benefit from the intake of levodopa

    EEG source connectivity to localize the seizure onset zone in patients with drug resistant epilepsy

    Get PDF
    Visual inspection of the EEG to determine the seizure onset zone (SOZ) in the context of the presurgical evaluation in epilepsy is time-consuming and often challenging or impossible. We offer an approach that uses EEG source imaging (ESI) in combination with functional connectivity analysis (FC) to localize the SOZ from ictal EEG. Ictal low-density-scalp EEG from 111 seizures in 27 patients who were rendered-seizure free after surgery was analyzed. For every seizure, ESI (LORETA) was applied on an artifact-free epoch selected around the seizure onset. Additionally, FC was applied on the reconstructed sources. We estimated the SOZ in two ways: (i)the source with highest power after ESI and (ii)the source with the most outgoing connections after ESI and FC. For both approaches, the distance between the estimated SOZ and the resected zone (RZ) of the patient were calculated. Using ESI alone, the SOZ was estimated inside the RZ in 31% of the seizures and within 10mm from the border of the RZ in 42%. For 18.5% of the patients, all seizures were estimated within 10mm of the RZ. Using ESI and FC, 72% of the seizures were estimated inside the RZ, and 94% within 10mm. For 85% of the patients, all seizures were estimated within 10mm of the RZ. FC provided a significant added value to ESI alone (p<0.001). ESI combined with subsequent FC is able to localize the SOZ in a non-invasive way with high accuracy. Therefore it could be a valuable tool in the presurgical evaluation of epilepsy

    The predictive value of hypometabolism in focal epilepsy:a prospective study in surgical candidates

    Get PDF
    Purpose: FDG PET is an established tool in presurgical epilepsy evaluation, but it is most often used selectively in patients with discordant MRI and EEG results. Interpretation is complicated by the presence of remote or multiple areas of hypometabolism, which leads to doubt as to the true location of the seizure onset zone (SOZ) and might have implications for predicting the surgical outcome. In the current study, we determined the sensitivity and specificity of PET localization prospectively in a consecutive unselected cohort of patients with focal epilepsy undergoing in-depth presurgical evaluation. Methods: A total of 130 patients who underwent PET imaging between 2006 and 2015 matched our inclusion criteria, and of these, 86 were operated on (72% with a favourable surgical outcome, Engel class I). Areas of focal hypometabolism were identified using statistical parametric mapping and concordance with MRI, EEG and intracranial EEG was evaluated. In the surgically treated patients, postsurgical outcome was used as the gold standard for correctness of localization (minimum follow-up 12 months). Results: PET sensitivity and specificity were both 95% in 86 patients with temporal lobe epilepsy (TLE) and 80% and 95%, respectively, in 44 patients with extratemporal epilepsy (ETLE). Significant extratemporal hypometabolism was observed in 17 TLE patients (20%). Temporal hypometabolism was observed in eight ETLE patients (18%). Among the 86 surgically treated patients, 26 (30%) had hypometabolism extending beyond the SOZ. The presence of unilobar hypometabolism, included in the resection, was predictive of complete seizure control (p = 0.007), with an odds ratio of 5.4. Conclusion: Additional hypometabolic areas were found in one of five of this group of nonselected patients with focal epilepsy, including patients with “simple” lesional epilepsy, and this finding should prompt further in-depth evaluation of the correlation between EEG findings, semiology and PET. Hypometabolism confined to the epileptogenic zone as defined by EEG and MRI is associated with a favourable postoperative outcome in both TLE and ETLE patients.</p

    Clinical Neuroimaging Using 7 T MRI: Challenges and Prospects

    Get PDF
    The aim of this article is to illustrate the principal challenges, from the medical and technical point of view, associated with the use of ultrahigh field (UHF) scanners in the clinical setting and to present available solutions to circumvent these limitations. We would like to show the differences between UHF scanners and those used routinely in clinical practice, the principal advantages, and disadvantages, the different UHFs that are ready be applied to routine clinical practice such as susceptibility-weighted imaging, fluid-attenuated inversion recovery, 3-dimensional time of flight, magnetization-prepared rapid acquisition gradient echo, magnetization-prepared 2 rapid acquisition gradient echo, and diffusion-weighted imaging, the technical principles of these sequences, and the particularities of advanced techniques such as diffusion tensor imaging, spectroscopy, and functional imaging at 7TMR. Finally, the main clinical applications in the field of the neuroradiology are discussed and the side effects are reported

    P362 Automated diagnosis of temporal lobe epilepsy in the absence of interictal spikes

    Get PDF
    Objective: To diagnose and lateralise temporal lobe epilepsy (TLE) by building a classification system that uses directed functional connectivity patterns estimated during EEG periods without visible pathological activity. Methods: Resting-state high-density EEG recording data from 20 left TLE patients, 20 right TLE patients and 35 healthy controls was used. Epochs without interictal spikes were selected. The cortical source activity was obtained for 82 regions of interest and whole-brain directed functional connectivity was estimated in the theta, alpha and beta frequency bands. These connectivity values were then used to build a classification system based on two two-class Random Forests classifiers: TLE vs healthy controls and left vs right TLE. Feature selection and classifier training were done in a leave-one-out procedure to compute the mean classification accuracy. Results: The diagnosis and lateralization classifiers achieved a high accuracy (90.7% and 90.0% respectively), sensitivity (95.0% and 90.0% respectively) and specificity (85.7% and 90.0% respectively). The most important features for diagnosis were the outflows from left and right medial temporal lobe, and for lateralization the right anterior cingulate cortex. The interaction between features was important to achieve correct classification

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    • …
    corecore