137 research outputs found

    Exchange and correlation energy functionals for two-dimensional open-shell systems

    Full text link
    We consider density functionals for exchange and correlation energies in two-dimensional systems. The functionals are constructed by making use of exact constraints for the angular averages of the corresponding exchange and correlation holes, respectively, and assuming proportionality between their characteristic sizes. The electron current and spin are explicitly taken into account, so that the resulting functionals are suitable to deal with systems exhibiting orbital currents and/or spin polarization. Our numerical results show that in finite systems the proposed functionals outperform the standard two-dimensional local spin-density approximation, still performing well also in the important limit of the homogeneous two-dimensional electron gas

    Local correlation functional for electrons in two dimensions

    Full text link
    We derive a local approximation for the correlation energy in two-dimensional electronic systems. In the derivation we follow the scheme originally developed by Colle and Salvetti for three dimensions, and consider a Gaussian approximation for the pair density. Then, we introduce an ad-hoc modification which better accounts for both the long-range correlation, and the kinetic-energy contribution to the correlation energy. The resulting functional is local, and depends parametrically on the number of electrons in the system. We apply this functional to the homogeneous electron gas and to a set of two-dimensional quantum dots covering a wide range of electron densities and thus various amounts of correlation. In all test cases we find an excellent agreement between our results and the exact correlation energies. Our correlation functional has a form that is simple and straightforward to implement, but broadly outperforms the commonly used local-density approximation

    Construction of the B88 exchange-energy functional in two dimensions

    Get PDF
    We construct a generalized-gradient approximation for the exchange-energy density of finite two-dimensional systems. Guided by non-empirical principles, we include the proper small-gradient limit and the proper tail for the exchange-hole potential. The observed performance is superior to that of the two-dimensional local-density approximation, which underlines the usefulness of the approach in practical applications

    Orbital currents in the Colle-Salvetti correlation energy functional and the degeneracy problem

    Full text link
    Popular density functionals for the exchange-correlation energy typically fail to reproduce the degeneracy of different ground states of open-shell atoms. As a remedy, functionals which explicitly depend on the current density have been suggested. We present an analysis of this problem by investigating functionals that explicitly depend on the Kohn-Sham orbitals. Going beyond the exact-exchange approximation by adding correlation in the form of the Colle-Salvetti functional we show how current-dependent terms enter the Colle-Salvetti expression and their relevance is evaluated. A very good description of the degeneracy of ground-states for atoms of the first and second row of the periodic table is obtained

    Exchange-energy functionals for finite two-dimensional systems

    Full text link
    Implicit and explicit density functionals for the exchange energy in finite two-dimensional systems are developed following the approach of Becke and Roussel [Phys. Rev. A 39, 3761 (1989)]. Excellent agreement for the exchange-hole potentials and exchange energies is found when compared with the exact-exchange reference data for the two-dimensional uniform electron gas and few-electron quantum dots, respectively. Thereby, this work significantly improves the availability of approximate density functionals for dealing with electrons in quasi-two-dimensional structures, which have various applications in semiconductor nanotechnology.Comment: 5 pages, 3 figure

    Universal correction for the Becke-Johnson exchange potential

    Get PDF
    The Becke-Johnson exchange potential [J. Chem. Phys. 124, 221101 (2006)] has been successfully used in electronic structure calculations within density-functional theory. However, in its original form the potential may dramatically fail in systems with non-Coulombic external potentials, or in the presence of external magnetic or electric fields. Here, we provide a system-independent correction to the Becke-Johnson approximation by (i) enforcing its gauge invariance and (ii) making it exact for any single-electron system. The resulting approximation is then better designed to deal with current-carrying states, and recovers the correct asymptotic behavior for systems with any number of electrons. Tests of the resulting corrected exchange potential show very good results for a Hydrogen chain in an electric field and for a four-electron harmonium in a magnetic field
    • …
    corecore