We derive a local approximation for the correlation energy in two-dimensional
electronic systems. In the derivation we follow the scheme originally developed
by Colle and Salvetti for three dimensions, and consider a Gaussian
approximation for the pair density. Then, we introduce an ad-hoc modification
which better accounts for both the long-range correlation, and the
kinetic-energy contribution to the correlation energy. The resulting functional
is local, and depends parametrically on the number of electrons in the system.
We apply this functional to the homogeneous electron gas and to a set of
two-dimensional quantum dots covering a wide range of electron densities and
thus various amounts of correlation. In all test cases we find an excellent
agreement between our results and the exact correlation energies. Our
correlation functional has a form that is simple and straightforward to
implement, but broadly outperforms the commonly used local-density
approximation