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Abstract

We construct a generalized-gradient approximation for theexchange-energy density of fi-

nite two-dimensional systems. Guided by non-empirical principles, we include the proper

small-gradient limit and the proper tail for the exchange-hole potential. The observed perfor-

mance is superior to that of the two-dimensional local-density approximation, which under-

lines the usefulness of the approach in practical applications.
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1 Introduction

Nanoscale electronic devices define a large variety of low-dimensional systems that range from

atomistic to artificial structures. These include, e.g., modulated semiconductor layers and surfaces,

quantum Hall systems, spintronic devices, quantum dots1 (QDs), quantum rings, and artificial

graphene.2 The complex effects of electron-electron interactions pose a challenge to accurately

compute the energy components of these structures.

Density-functional theory3–5 (DFT) is ideally suited to balance numerical effort and accuracy.

Considerable advances beyond the commonly used local-density approximation (LDA) have been

achieved by generalized gradient approximations (GGAs), orbital functionals, and hybrid func-

tionals.6 Previous studies have shown that most functionals developed for 3D systems break down

when applied to realistic models of two-dimensional (2D) systems.7,8 In particular, accurate mod-

eling of semiconductor quantum dots (in, e.g. GaAs/AlGaAs interfaces1) requires the use of 2D

functionals, since the degrees of freedom are suppressed inthe direction perpendicular to the plane.

The relevance of including in standard 3D functionals the ability to recover the 2D limit – at least

at the LDA level – has been clearly demonstrated in a recent work dealing with heterogeneous

3D atomistic materials.9 The construction of more elaborated approximations for theexchange-

correlation energy in 2D beyond LDA10–12started also relatively recently;13–18 in particular, they

demonstrated some of the limitations of the 2D-LDA and how toovercome them.

In this work we focus on exchange energies of finite systems and take the natural step beyond

LDA by including the dependence of the functional on densitygradients. We follow a procedure

which solves the long-standing challenge of obtaining annon-empiricalgradient expansion for the

exchange energy of finite 2D systems.19 We achieve this result by carrying out a semiclassical anal-

ysis analogous to that of high-Z atoms in 3D.20,21The form of the functional used as a paradigm is

B88.21 This allows us not only to come up with a form that has a proper small-gradient expansion,

but also to obtain a model for the exchange-hole potential that has the proper asymptotic tail.

The present work is organized as follows. In Sec. 2 we briefly review the construction of

the B88 functional (in 3D) and then proceed with the 2D case, exploiting the semiclassical limit of
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parabolic quantum dots. In Sec. 3 we test the derived functional for a large set of QDs and quantum

rings. A summary is given in Sec. 4.

2 Construction of B88 in two dimensions

2.1 General considerations

The functional known as B88 in 3D is – as a fundamental ingredient of B3LYP25 – among the

most popular density functionals. It defines the energy density per electron with appealing features

for finite systems such as a proper tail,21 and it recovers an appropriate small-gradient limit.20,21

Let us first briefly remind of the B88 expression in 3D. For (globally collinear) spin-polarized

states, it is convenient to write the exchange energy in terms of the exchange-hole potentialUX,σ

as

EB88
X =

1
2∑

σ

∫

d3r nσ (r)UB88
X,σ (r) (1)

and split it into two contributions

UB88
X,σ (r) =ULDA

X,σ (r)+∆UB88
X,σ (r). (2)

Here the first term comes from the LDA,

ULDA
X,σ =CXn1/3

σ , CX =−3

[

3
4π

]1/3

, (3)

and the second term is introduced in order to account for the inhomogeneities of the system through

an expression

∆UB88
X,σ =−β

n1/3
σ x2

σ
1+6βxσ sinh−1(xσ )

, (4)
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that depends on the dimensionless gradient

xσ =
|∇nσ |
n4/3

σ
. (5)

A straightforward dimensional analysis suggests the following 2D version

E2D−B88
X =

1
2∑

σ

∫

d2r nσ (r)U2D−B88
X,σ (r), (6)

where

U2D−B88
X,σ (r) =ULDA

X,σ (r)+∆U2D−B88
X,σ (r) , (7)

with

U2D−LDA
X,σ =C2D

X n1/2
σ , (8)

∆U2D−B88
X,σ =−β2D

n1/2
σ x̃2

σ
1+ γβ2D x̃σ sinh−1(x̃σ )

, (9)

and the 2D dimensionless gradient

x̃σ =
|∇nσ |
n3/2

σ
. (10)

In this case, however, the dimensional analysis cannot determine the coefficientsC2D
X , γ, and

β2D.ForC2D
X it is tempting to use the value provided by the 2D-LDA:10 C2D

X = −16/(3
√

π) (this

choice will be further justified below). In order to determine γ, we require that the 2D exchange-

hole potential behaves as−1/r at larger (Ref.24) for densities that behave ase−aσ r2
, which is the

case in, e.g., parabolic QDs. In this way we obtainγ = 8.

As the last step, we need to findβ2D, where we start by observing thatβ2D would provide the

coefficient of the quadratic term of the small-gradient limit, i.e.,

∆E2D−B88
X ≈−β2D ∑

σ

∫

d2r n3/2
σ x̃2

σ . (11)

However, standard techniques applied to obtain a gradient expansion in 2D fail to yield finite
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coefficients.19 Therefore, it is crucial to look for alternative ways to define the gradient expansion

in some proper sense.

2.2 Semiclassical limit via scaling of the potential and particle number

In 3D, β was obtained by Becke through the fitting of (Hartree-Fock) exchange energies for “high-

Z” noble-gas atoms.21 Recently, Elliott and Burke proved that this choice has a fully non-empirical

character.20 In particular, they elucidated – through a careful and accurate numerical analysis at the

level of exact-exchange (EXX) calculations – that, in the high-Z limit, the local exchange gives the

leading contribution to the exchange energy,22,23and the second-order gradient corrections yields

the leading contribution of local inhomogeneities with a coefficient very close to the one found by

Becke.21 This coefficient is different from the one that may be deducedfrom standard gradient ex-

pansions, where a weakly inhomogeneous extended periodic system is used as the reference.Finite

systems cannot be considered weakly inhomogeneous, but their high-Z limit corresponds to a fa-

vorable exception20,26emerging from the exact behavior of interacting quantum systems.22,23,27,28

Next, we show that a similar idea and procedure applies to 2D.We restrict the analysis to

parabolic quantum dots, often referred as artificial atoms of the 2D world. Lieb and co-workers29

have rigorously proven that if the constantω of a parabolic confinement potential

Vext(r) =
1
2

mω2 r2 (12)

is scaled with the particle number as

N → N′ = λN, ω → ω ′ =
√

λω , (13)

the 2D Thomas-Fermi (TF) theory provides the leading contribution to thetotal energy for large

N (Ref.29). Correspondingly, the TF density,nTF will reproduce the exact density in an averaged

sense. In other words, the system becomes increasingly semiclassical as a function ofN. In the

following, we explore the situation at the level of exchange. All the numerical results were obtained
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with the codeOCTOPUS.30

In 1 we show the electronic density of a series ofclosed-shellparabolic QDs (N=2,6,12, . . . ,182)

obeying Eq. (??) with initial ωN=2 = 1 (a.u.). Clearly the density increases withN while its ra-

dial extent remains approximately constant. The picture suggests that the system is gradually

approaching the high-density limit. Consequently, exchange effects will eventually dominate over

correlation. Moreover, therelativeamplitude of the density oscillations gradually become negligi-

ble. This is evident in 2 that shows the corresponding dimensionless gradients ˜x. It is appealing to

conclude that, asymptotically, the LDA provides the “exact” result for exchange – as the region of

the divergence of ˜x becomes energetically irrelevant. This is clarified further below.

The density satisfies asymptotically the scaling relation

nTF,N(r) = NnTF,1(r) . (14)

Using Eq. (??) in Eqs. (??) and (??) we find that the LDA exchange energies are of the order

N4/3, and the second-order gradient corrections are of the orderN1/2, respectively. 3 shows that

the LDA and exact exchange (EXX) energies, the latter evaluated within the Krieger-Lee-Iafrate31

(KLI) approximation, converge to the same value at the orderN4/3. This analysis justifies using

the valueC2D
X =−16/(3

√
π) that stems from the 2D-LDA.

Now we proceed to the next order,N1/2, and try to determineβ2D numerically. 4 shows the

relative error of the 2D-B88 functional as a function ofβ2D for the same set of parabolic quantum

dots withN = 2,6,12, . . . ,182. For eachN, we determine the optimalβ2D that gives zero error.

The inset of 4 shows the behavior of this sequence. A simple polynomial fit leads toβ2D = 0.007

in theN → ∞ limit. We point out, however, that there is uncertainty in this value beacause of the

following reasons. First, our analysis is limited byNmax= 182 due to the demanding convergence

of the EXX-KLI reference results on a cartesian grid. This prevents us to fully explore the asymp-

totic region, and we cannot exclude the possibility of smallnumerical errors at the order ofN4/3

affecting the estimation made at next (lower) order inN. Secondly, the full optimized-effective-
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Figure 1: Electron densities for parabolic quantum dots with N = 2, . . . ,182 electrons scaled ac-
cording to Eq. (??). As a function ofN (from bottom to top), the spatial extent is preserved and
the relative density oscillations become smaller.
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Figure 2: Dimensionless gradient ˜x for (scaled) parabolic quantum dots withN = 6, 30, 90, 182,
respectively (cf. the densities in 1). The circles on the right correspond to the mean values ofx in
the ranger = 0. . .2 a.u.
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Figure 3: Comparison of exchange energies of the exact-exchange scheme in the KLI approxima-
tion and the two-dimensional local-density approximation(LDA) for a set of parabolic quantum
dots at the order ofN4/3 (see text). The LDA results approach the KLI values as a function of N.
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potential (OEP) scheme might lead to a different optimal value ofβ2D, although it is known (in the

3D case) that the KLI approximation is typically very close to the OEP result. Thirdly, different

confinement/boundary conditions (i.e., different types ofturning points) can, in principle, lead to

different (yet fully non-empirical) optimal values forβ2D. Therefore, having a different reference

system instead of a parabolic quantum dot could affect the result as well; this aspect is touched in

the next section, where we explore the performance of our functional on quantum rings.

Despite the uncertainties listed above, the general principles in the determination ofβ2D are

clear. Therefore we proceed by choosingβ2D= 0.007, and assess the performance of the functional

in detail in the following section.

3 Performance in applications

Next we test our 2D-B88 functionalself-consistentlyfor realistic 2D systems in comparison with

exchange-only energies obtained with the KLI and local-density approximations. We shall take a

look at systems not included in the estimation ofβ2D. 1 shows the exchange energies of parabolic

QDs with variousN and confinement strengthsω [see Eq. (??)]. The relative errors of the ap-

proximations are given in the last two columns. Overall, we find excellent agreement between

2D-B88 and EXX-KLI with a mean relative error of 1.7% for the whole set. In comparison, the

2D-LDA yields a mean error of 5.2%. We note that, as expected, both approximations improve

their accuracy as a function ofN.

In 2 we examine the performance of the 2D-B88 in QDs at low electron densities (small con-

finement strengths for only a few electrons). This regime is important in view of QD applications

exploiting strongly correlated electrons. Again, we find that 2D-B88 clearly overperforms the LDA

and yields very accurate exchange energies in comparison with the EXX-KLI. However, it remains

to be tested how the 2D-B88 works in combination with a carefully chosen functional for the cor-

relation. Only such a combined functional would be truly useful for applications in the low-density

regime.
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Table 1: Exchange energies (in atomic units) for parabolic quantum dots with varyingN and
confinement strengthω. The columns correspond to the exact exchange in the KLI approximation,
the local density-approximation (LDA), and the generalized-gradient approximation presented in
this work (2D-B88).

N ω −EKLI
x −ELDA

x −E2D−B88
x |∆LDA

rel | |∆2D−B88
rel |

2 0.5 0.7291 0.6495 0.6992 10.9% 4.10%
2 1.5 1.3583 1.2147 1.3048 10.6% 3.94%
2 2.5 1.7979 1.6106 1.7284 10.4% 3.87%
2 3.5 2.1571 1.9343 2.0745 10.3% 3.83%
6 0.5 2.4707 2.3392 2.4311 5.32% 1.60%
6 1.5 4.7267 4.4823 4.6486 5.17% 1.65%
6 2.5 6.3311 6.0081 6.2266 5.10% 1.65%
6 3.5 7.6509 7.2638 7.5252 5.06% 1.64%
12 0.5 5.4316 5.2571 5.3875 3.21% 0.81%
12 1.5 10.535 10.206 10.444 3.13% 0.87%
12 2.5 14.204 13.765 14.080 3.09% 0.88%
12 3.5 17.237 16.709 17.086 3.06% 0.88%
20 0.5 9.7651 9.5537 9.7229 2.16% 0.43%
20 1.5 19.107 18.704 19.013 2.11% 0.49%
20 2.5 25.874 25.334 25.744 2.09% 0.50%
20 3.5 31.490 30.837 31.330 2.07% 0.51%
mean error 5.2% 1.7%
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3 shows exchange energies for fully spin-polarized (S= N/2) parabolic quantum dots with a

relatively low confinement strength. As in the previous examples, 2D-B88 is very accurate. This

test validates the usability of the functional in a fully spin-dependent fashion according to the above

formulation.

Table 2: Exchange energies (in atomic units) for low-density parabolic quantum dots. The columns
correspond to the exact exchange in the KLI approximation, the local density-approximation
(LDA), and the generalized-gradient approximation presented in this work (2D-B88).

N ω −EKLI
x −ELDA

x −E2D−B88
x |∆LDA

rel | |∆2D−B88
rel |

2 1 1.0831 0.9673 1.0398 10.7% 4.00%
2 1/4 0.4851 0.4312 0.4647 11.1% 4.21%
2 1/6 0.3801 0.3376 0.3640 11.2% 4.24%
2 1/16 0.2075 0.1844 0.1993 11.1% 3.95%
2 1/36 0.1275 0.1141 0.1268 10.5% 0.55%
6 1/4 1.6185 1.5312 1.5943 5.39% 1.50%
6 1/16 0.6766 0.6403 0.6697 5.37% 1.02%
mean error 9.3% 2.8%

Table 3: Exchange energies (in atomic units) for spin-polarized (S= N/2) parabolic quantum
dots. The columns correspond to the exact exchange in the KLIapproximation, the local density-
approximation (LDA), and the generalized-gradient approximation presented in this work (2D-
B88).

N ω −EKLI
x −ELDA

x −E2D−B88
x |∆LDA

rel | |∆2D−B88
rel |

2 1/4 0.6645 0.6018 0.6421 9.43% 3.37%
3 1/4 1.0146 0.9533 0.9987 6.04% 1.57%
4 1/4 1.4303 1.3363 1.4019 6.57% 1.99%
5 1/4 1.8091 1.7228 1.7876 4.77% 1.19%
6 1/4 2.1973 2.1177 2.1813 3.62% 0.73%
2 1/16 0.3182 0.2765 0.3035 13.1% 4.62%
3 1/16 0.4607 0.4296 0.4631 6.75% 0.52%
4 1/16 0.6697 0.5979 0.6487 10.7% 3.14%
5 1/16 0.8165 0.7607 0.8064 6.83% 1.24%
6 1/16 0.9709 0.9265 0.9853 4.57% 1.48%
mean error 7.2% 2.0%

Besides the exchange energies, it is informative to comparethe exchange-hole potentials as

well as the Kohn-Sham exchange potentials. 5(a) showsUX,σ for an N = 20 parabolic QD with

ω = 0.4217 a.u. The structure of the potential in the central part (within the shells) is very similar
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in the LDA and 2D-B88. However, the latter functional is ableto describe the asymptotic behavior

very accurately in comparison with the EXX-KLI result. In turn, this leads to accurate exchange

energies given by 2D-B88. The behavior at larger is expected due to the form in Eq. (??) that

resembles the asymptotically corrected functional for theexchange-correlation potential in Ref.32

The Kohn-Sham exchange potentialsVX are shown in 5(b). In this case, neither LDA nor 2D-

B88 are able to give the correct asymptotic behavior. However, it is interesting to see that the

2D-B88 potential produces the shell structure more accurately than the LDA at 0< r . 5 a.u.

We also find close similarity in the shell region between the 2D-B88 and the meta-GGA result

suggested in Ref.24 for VX. We note, however, that the values in the lower panel of Fig. 4in that

reference miss a factor of two.

Table 4: Exchange energies (in atomic units) for a quantum ring (see text). The columns corre-
spond to the exact exchange in the KLI approximation, the local density-approximation (LDA),
and the generalized-gradient approximation presented in this work (2D-B88).

N −EKLI
x −ELDA

x −E2D−B88
x |∆LDA

rel | |∆2D−B88
rel |

6 2.1590 2.1095 2.2668 2.29% 4.99%
10 4.5192 4.3106 4.5458 4.62% 0.59%
14 7.1495 6.7915 7.0867 5.01% 0.88%
20 10.820 10.568 10.883 2.33% 0.58%
24 13.356 13.126 13.437 1.72% 0.61%
mean error 3.2% 1.5%

For the usefulness of the 2D-B88 functional it is important to test its validity for different phys-

ical systems. In the following we open the discussion to thisdirection by examining a quantum

ring. As the system has a different topology from a QD it givesuseful insights into the general

applicability of the functional. The external potential isnow defined asVext(r) = ω2(r − r0)
2/2,

where we setω = 1 a.u. andr0 = 3 a.u. The results for exchange energies are given in 4. Over-

all, 2D-B88 yields significantly more accurate results thanthe LDA except for theN = 6 ring.

In that particular case the width of the electron density along the perimeter is relatively small –

approaching the quasi-one-dimensional system, which calls for more elaborate ways to deal with

the electronic exchange.16 Nevertheless, atN > 6 the accuracy of the 2D-B88 is excellent: the

deviation from the KLI exchange energy remains below 1%.
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Figure 5: Self-consistent exchange-hole potentials (a) and Kohn-Sham exchange potentials (b)
calculated with EXX-KLI, 2D-LDA, and 2D-B88, respectively(exchange only) for a 20-electron
parabolic quantum dot withω = 0.4217 a.u.
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4 Summary

In this work we constructed a generalized-gradient approximation for the exchange energy in two

dimensions (2D). With the construction we overcame the known problems in finding finite co-

efficients for the 2D gradient expansion through, e.g., the Kirzhnits expansion. Our formulation

follows the B88 exchange functional. The final coefficient was then found through a fitting to

properly scaled 2D harmonic oscillators in the large-N limit, corresponding to the high-Z limit

in three-dimensional atomic systems. We tested the obtained exchange-energy functional for var-

ious quantum dots and found excellent agreement with exact-exchange results and a significant

improvement over the standard local-density approximation. The functional also leads to a proper

asymptotic tail of the exchange-hole potential and a more accurate exchange potential than that

of the local-density approximation. The generality of the functional was confirmed in tests for

low-density quantum dots, spin-polarized systems, as wellas 2D quantum rings. Possible further

extensions of the present construction could include adaptation to the recently developed density-

functional formalism for strongly interacting electrons.33,34
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