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Abstract

We construct a generalized-gradient approximation forettehange-energy density of fi-
nite two-dimensional systems. Guided by non-empiricahqples, we include the proper
small-gradient limit and the proper tail for the exchangéethpotential. The observed perfor-
mance is superior to that of the two-dimensional local-dgrepproximation, which under-

lines the usefulness of the approach in practical apptinati
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1 Introduction

Nanoscale electronic devices define a large variety of lomedsional systems that range from
atomistic to artificial structures. These include, e.g.daolated semiconductor layers and surfaces,
quantum Hall systems, spintronic devices, quantumd¢@Ds), quantum rings, and artificial
graphene The complex effects of electron-electron interactionsepashallenge to accurately
compute the energy components of these structures.

Density-functional theor (DFT) is ideally suited to balance numerical effort and aacy.
Considerable advances beyond the commonly used locaitgapproximation (LDA) have been
achieved by generalized gradient approximations (GGAdjital functionals, and hybrid func-
tionals® Previous studies have shown that most functionals develfgpeD systems break down
when applied to realistic models of two-dimensional (2D§teyns’8 In particular, accurate mod-
eling of semiconductor quantum dots (in, e.g. GaAs/AlGaRsrfaces) requires the use of 2D
functionals, since the degrees of freedom are suppressieel direction perpendicular to the plane.
The relevance of including in standard 3D functionals thiétgiho recover the 2D limit — at least
at the LDA level — has been clearly demonstrated in a recenk dealing with heterogeneous
3D atomistic materialS. The construction of more elaborated approximations foretkehange-
correlation energy in 2D beyond LBR? started also relatively recentd?=18in particular, they
demonstrated some of the limitations of the 2D-LDA and howwercome them.

In this work we focus on exchange energies of finite systerddale the natural step beyond
LDA by including the dependence of the functional on dengigdients. We follow a procedure
which solves the long-standing challenge of obtainingam-empiricalgradient expansion for the
exchange energy of finite 2D systedAf8/\Ve achieve this result by carrying out a semiclassical anal-
ysis analogous to that of high-Z atoms in %2 The form of the functional used as a paradigm is
B88.21 This allows us not only to come up with a form that has a propelsgradient expansion,
but also to obtain a model for the exchange-hole potentalths the proper asymptotic tail.

The present work is organized as follows. In Séc. 2 we brieflyewv the construction of

the B88 functional (in 3D) and then proceed with the 2D casgloiting the semiclassical limit of
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parabolic quantum dots. In Sé¢. 3 we test the derived fumatior a large set of QDs and quantum

rings. A summary is given in Sed. 4.

2 Construction of B88 in two dimensions

2.1 General considerations

The functional known as B88 in 3D is — as a fundamental ingmtdof B3LYP2® — among the
most popular density functionals. It defines the energyitiepsr electron with appealing features
for finite systems such as a proper t&iland it recovers an appropriate small-gradient lifi!

Let us first briefly remind of the B88 expression in 3D. For {by collinear) spin-polarized
states, it is convenient to write the exchange energy inderfithe exchange-hole potentidy

as

888 3 588
ES ZZ/drngU () (1)

and split it into two contributions
URER(r) = UKRA () + BURSR(r). 2)

Here the first term comes from the LDA,
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and the second termis introduced in order to account fonth@nogeneities of the system through

an expression
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that depends on the dimensionless gradient
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A straightforward dimensional analysis suggests the Watig 2D version
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and the 2D dimensionless gradient
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In this case, however, the dimensional analysis cannotrdate the coefficienté:)z(D, y, and
Bap.For CZP it is tempting to use the value provided by the 2D-LBACZP = —16/(3/7) (this
choice will be further justified below). In order to determipy we require that the 2D exchange-
hole potential behaves asl/r at larger (Ref2%) for densities that behave as®'’ which is the
case in, e.g., parabolic QDs. In this way we obtain 8.

As the last step, we need to fifldp, where we start by observing th@ip would provide the

coefficient of the quadratic term of the small-gradient time.,
DEP P oy [y (11)
g

However, standard techniques applied to obtain a gradigdresion in 2D fail to yield finite



coefficients!® Therefore, it is crucial to look for alternative ways to defihe gradient expansion

in some proper sense.

2.2 Semiclassical limit via scaling of the potential and particle number

In 3D, B was obtained by Becke through the fitting of (Hartree-Fogkhange energies for “high-
Z” noble-gas atomé! Recently, Elliott and Burke proved that this choice has by fubn-empirical
characte?? In particular, they elucidated — through a careful and aateumumerical analysis at the
level of exact-exchange (EXX) calculations — that, in thghRZ limit, the local exchange gives the
leading contribution to the exchange enefg¥? and the second-order gradient corrections yields
the leading contribution of local inhomogeneities with &fficient very close to the one found by
Becke?! This coefficient is different from the one that may be deduoeah standard gradient ex-
pansions, where a weakly inhomogeneous extended perigstars is used as the referenéaite
systems cannot be considered weakly inhomogeneous, uhifle-Z limit corresponds to a fa-
vorable exceptiofP:26emerging from the exact behavior of interacting quantuntesgs22:23:27.28

Next, we show that a similar idea and procedure applies toV2® restrict the analysis to
parabolic quantum dots, often referred as artificial atofite@2D world. Lieb and co-workef8
have rigorously proven that if the constambf a parabolic confinement potential

1
Vext(r) = Sma’r? (12)

is scaled with the particle number as
NN =AN, w— & =VAw, (13)

the 2D Thomas-Fermi (TF) theory provides the leading cbuation to thetotal energy for large
N (Ref2%). Correspondingly, the TF density;e will reproduce the exact density in an averaged
sense. In other words, the system becomes increasinglylsasical as a function df. In the

following, we explore the situation at the level of exchangitthe numerical results were obtained
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with the codeocTopus®

In[Iwe show the electronic density of a serieslobed-shelparabolic QDsN = 2,6,12,...,182)
obeying Eq. ??) with initial wy—2 = 1 (a.u.). Clearly the density increases wiNhwhile its ra-
dial extent remains approximately constant. The pictuggests that the system is gradually
approaching the high-density limit. Consequently, exgeagffects will eventually dominate over
correlation. Moreover, theelativeamplitude of the density oscillations gradually becomdigeg
ble. This is evident if]2 that shows the corresponding dinoafsss gradients. Tt is appealing to
conclude that, asymptotically, the LDA provides the “eXaesult for exchange — as the region of
the divergence af becomes energetically irrelevant. This is clarified furtbelow.

The density satisfies asymptotically the scaling relation

nreN(r) = Nnrea(r) . (14)

Using Eq. ?) in Egs. ??) and (??) we find that the LDA exchange energies are of the order
N4/3, and the second-order gradient corrections are of the &i&fér respectively[13 shows that
the LDA and exact exchange (EXX) energies, the latter etatlsithin the Krieger-Lee-lafrafé
(KLI) approximation, converge to the same value at the oNfé?. This analysis justifies using
the valueCZP = —16/(3,/) that stems from the 2D-LDA.

Now we proceed to the next ordét!/2, and try to determing,p numerically.[# shows the
relative error of the 2D-B88 functional as a functionf®f for the same set of parabolic quantum
dots withN =2,6,12,...,182. For eaciN, we determine the optim#l,p that gives zero error.
The inset of # shows the behavior of this sequence. A simgigpmial fit leads tq3,p = 0.007
in theN — o limit. We point out, however, that there is uncertainty irstialue beacause of the
following reasons. First, our analysis is limited Nyax = 182 due to the demanding convergence
of the EXX-KLI reference results on a cartesian grid. Thisvyents us to fully explore the asymp-
totic region, and we cannot exclude the possibility of smalherical errors at the order bf/3

affecting the estimation made at next (lower) ordeNinSecondly, the full optimized-effective-
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Figure 1: Electron densities for parabolic quantum doté& \Wit= 2, ...,182 electrons scaled ac-

cording to Eqg. ?). As a function ofN (from bottom to top), the spatial extent is preserved and
the relative density oscillations become smaller.
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Figure 2: Dimensionless gradiexfcdr (scaled) parabolic quantum dots with= 6, 30, 90, 182,
respectively (cf. the densities[ih 1). The circles on thétriprrespond to the mean valuesxah
therangeg =0...2 a.u.
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Figure 3: Comparison of exchange energies of the exactagehscheme in the KLI approxima-
tion and the two-dimensional local-density approximat{bBA) for a set of parabolic quantum
dots at the order dfl*/3 (see text). The LDA results approach the KLI values as a fanaif N.



potential (OEP) scheme might lead to a different optimaleadf 3,p, although it is known (in the
3D case) that the KLI approximation is typically very closethie OEP result. Thirdly, different
confinement/boundary conditions (i.e., different typesuofing points) can, in principle, lead to
different (yet fully non-empirical) optimal values f@p. Therefore, having a different reference
system instead of a parabolic quantum dot could affect thaltras well; this aspect is touched in
the next section, where we explore the performance of owtimal on quantum rings.

Despite the uncertainties listed above, the general pliegiin the determination @d,p are
clear. Therefore we proceed by choosfhg = 0.007, and assess the performance of the functional

in detail in the following section.

3 Performancein applications

Next we test our 2D-B88 functionaklf-consistentljor realistic 2D systems in comparison with
exchange-only energies obtained with the KLI and localsdgrapproximations. We shall take a
look at systems not included in the estimatiorBah. [Il shows the exchange energies of parabolic
QDs with variousN and confinement strengthis [see Eq. ??)]. The relative errors of the ap-
proximations are given in the last two columns. Overall, vnel fexcellent agreement between
2D-B88 and EXX-KLI with a mean relative error of 2% for the whole set. In comparison, the
2D-LDA vyields a mean error of .2%. We note that, as expected, both approximations improve
their accuracy as a function dF.

In[2 we examine the performance of the 2D-B88 in QDs at lowtedecdensities (small con-
finement strengths for only a few electrons). This regimenigartant in view of QD applications
exploiting strongly correlated electrons. Again, we finattRD-B88 clearly overperforms the LDA
and yields very accurate exchange energies in comparigbritvei EXX-KLI. However, it remains
to be tested how the 2D-B88 works in combination with a cdiefthosen functional for the cor-
relation. Only such a combined functional would be trulyfuktor applications in the low-density

regime.
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Figure 4: Relative error of the 2D-B88 functional with respi® the EXX-KLI results (see text) as
a function off3yp for parabolic quantum dots with = 2,...,182. The optimaB,p (zero error) as
a function ofN are seen to converge in the inset. The horizontal line inritetishows our choice
Bzp — 0.007.
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Table 1: Exchange energies (in atomic units) for parabalianqum dots with varyingN and
confinement strengttv. The columns correspond to the exact exchange in the KL lceqopation,
the local density-approximation (LDA), and the generaligeadient approximation presented in
this work (2D-B88).

KLI LDA 2D—B88 LDA 2D—B88
w _Ex _Ex _Ex |Arel |Arel

0.5 0.7291 0.6495 0.6992 10.9% 4.10%
1.5 1.3583 1.2147 1.3048 10.6% 3.94%
25 1.7979 1.6106 1.7284 10.4% 3.87%
3.5 2.1571 1.9343 2.0745 10.3% 3.83%
0.5 2.4707 2.3392 2.4311 5.32% 1.60%
1.5 4.7267 4.4823 4.6486 5.17% 1.65%
25 6.3311 6.0081 6.2266 5.10% 1.65%
3.5 7.6509 7.2638 7.5252 5.06% 1.64%
12 05 5.4316 5.2571 5.3875 3.21% 0.81%
12 15 10.535 10.206 10.444 3.13% 0.87%
12 25 14.204 13.765 14.080 3.09% 0.88%
12 3.5 17.237 16.709 17.086 3.06% 0.88%
20 0.5 9.7651 9.5537 9.7229 2.16% 0.43%
20 1.5 19.107 18.704 19.013 2.11% 0.49%
20 25 25874 25.334 25.744 2.09% 0.50%
20 3.5 31.490 30.837 31.330 2.07% 0.51%
mean error 5.2% 1.7%

OO NNNNZ
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shows exchange energies for fully spin-polariz8e-=(N/2) parabolic quantum dots with a
relatively low confinement strength. As in the previous egbes, 2D-B88 is very accurate. This
test validates the usability of the functional in a fullyrsglependent fashion according to the above

formulation.

Table 2: Exchange energies (in atomic units) for low-dgrmatrabolic quantum dots. The columns
correspond to the exact exchange in the KLI approximatibe, lbcal density-approximation
(LDA), and the generalized-gradient approximation présgim this work (2D-B88).

KLI LDA 2D—B88 LDA 2D—B388
w — Ex — Ex — Ex ‘Arel ‘Arel

N

2 1 1.0831 0.9673 1.0398 10.7%  4.00%
2 1/4 0.4851 0.4312 0.4647 11.1% 4.21%
2 1/6 0.3801 0.3376 0.3640 11.2%  4.24%
2
2
6
6

1/16 0.2075 0.1844 0.1993 11.1% 3.95%
1/36 0.1275 0.1141 0.1268 10.5% 0.55%
1/4 1.6185 1.5312 1.5943 5.39% 1.50%
1/16 0.6766 0.6403 0.6697 5.37% 1.02%
mean error 9.3% 2.8%

Table 3: Exchange energies (in atomic units) for spin-poéar S= N/2) parabolic quantum
dots. The columns correspond to the exact exchange in the@pjioximation, the local density-
approximation (LDA), and the generalized-gradient appration presented in this work (2D-
B88).

N @ EXT EDN ED P8 AT |n e
2 1/4 0.6645 0.6018 0.6421 9.43% 3.37%
3 1/4 1.0146 0.9533 0.9987 6.04% 1.57%
4 1/4 1.4303 1.3363 1.4019 6.57% 1.99%
5 1/4 18091 1.7228 1.7876 4.77% 1.19%
6 1/4 2.1973 2.1177 2.1813 3.62% 0.73%
2 1/16 0.3182 0.2765 0.3035 13.1% 4.62%
3 1/16 0.4607 0.4296 0.4631 6.75% 0.52%
4 1/16 0.6697 0.5979 0.6487 10.7% 3.14%
5 1/16 0.8165 0.7607 0.8064 6.83% 1.24%
6 1/16 0.9709 0.9265 0.9853 4.57% 1.48%
mean error 7.2% 2.0%

Besides the exchange energies, it is informative to comirerexchange-hole potentials as
well as the Kohn-Sham exchange potentials. 5(a) shdyvs for anN = 20 parabolic QD with

w = 0.4217 a.u. The structure of the potential in the central path{n the shells) is very similar
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in the LDA and 2D-B88. However, the latter functional is atdelescribe the asymptotic behavior
very accurately in comparison with the EXX-KLI result. It this leads to accurate exchange
energies given by 2D-B88. The behavior at large expected due to the form in ER?) that
resembles the asymptotically corrected functional forekehange-correlation potential in R&.
The Kohn-Sham exchange potentigjsare shown in5(b). In this case, neither LDA nor 2D-
B88 are able to give the correct asymptotic behavior. Howaetés interesting to see that the
2D-B88 potential produces the shell structure more acelyrdhan the LDA at O<r < 5 a.u.
We also find close similarity in the shell region between tBeBB8 and the meta-GGA result
suggested in Re¥ for Vix. We note, however, that the values in the lower panel of Fim that

reference miss a factor of two.

Table 4. Exchange energies (in atomic units) for a quantug ($ee text). The columns corre-
spond to the exact exchange in the KLI approximation, thalldensity-approximation (LDA),
and the generalized-gradient approximation presentddsmiork (2D-B88).

KLI LDA 2D—-B88 LDA 2D—-B88
N —E —Ex —E |Are| |Are|

6 2.1590 2.1095 2.2668 2.29% 4.99%
10 45192 4.3106 4.5458 4.62% 0.59%
14 7.1495 6.7915 7.0867 5.01% 0.88%
20 10.820 10.568 10.883 2.33% 0.58%
24 13.356 13.126 13.437 1.72% 0.61%
mean error 3.2% 1.5%

For the usefulness of the 2D-B88 functional it is importaneist its validity for different phys-
ical systems. In the following we open the discussion to diiection by examining a quantum
ring. As the system has a different topology from a QD it giuesful insights into the general
applicability of the functional. The external potentialniew defined a¥ex(r) = w?(r —ro)?/2,
where we seto = 1 a.u. andg = 3 a.u. The results for exchange energies are giveh in 4. Over-
all, 2D-B88 yields significantly more accurate results thiae LDA except for theN = 6 ring.
In that particular case the width of the electron densitywglthe perimeter is relatively small —
approaching the quasi-one-dimensional system, whick @@llmore elaborate ways to deal with
the electronic exchang¥. Nevertheless, ail > 6 the accuracy of the 2D-B88 is excellent: the

deviation from the KLI exchange energy remains below 1%.
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r(a.u.)
Figure 5: Self-consistent exchange-hole potentials (d) kohn-Sham exchange potentials (b)

calculated with EXX-KLI, 2D-LDA, and 2D-B88, respective{gxchange only) for a 20-electron
parabolic quantum dot wittb = 0.4217 a.u.
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4 Summary

In this work we constructed a generalized-gradient appnation for the exchange energy in two
dimensions (2D). With the construction we overcame the knpwoblems in finding finite co-
efficients for the 2D gradient expansion through, e.g., tirehfits expansion. Our formulation
follows the B88 exchange functional. The final coefficientswaen found through a fitting to
properly scaled 2D harmonic oscillators in the laigéimit, corresponding to the high-Z limit
in three-dimensional atomic systems. We tested the oltaarehange-energy functional for var-
ious quantum dots and found excellent agreement with exedtange results and a significant
improvement over the standard local-density approximafidne functional also leads to a proper
asymptotic tail of the exchange-hole potential and a mooeirate exchange potential than that
of the local-density approximation. The generality of thedtional was confirmed in tests for
low-density quantum dots, spin-polarized systems, asagllD quantum rings. Possible further
extensions of the present construction could include adiaptto the recently developed density-

functional formalism for strongly interacting electro#&3*
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