348 research outputs found

    The two regimes of the cosmic sSFR evolution are due to spheroids and discs

    Full text link
    This paper aims at explaining the two phases in the observed specific star formation rate (sSFR), namely the high (>3/Gyr) values at z>2 and the smooth decrease since z=2. In order to do this, we compare to observations the specific star formation rate evolution predicted by well calibrated models of chemical evolution for elliptical and spiral galaxies, using the additional constraints on the mean stellar ages of these galaxies (at a given mass). We can conclude that the two phases of the sSFR evolution across cosmic time are due to different populations of galaxies. At z>2 the contribution comes from spheroids: the progenitors of present-day massive ellipticals (which feature the highest sSFR) as well as halos and bulges in spirals (which contribute with average and lower-than-average sSFR). In each single galaxy the sSFR decreases rapidly and the star formation stops in <1 Gyr. However the combination of different generations of ellipticals in formation might result in an apparent lack of strong evolution of the sSFR (averaged over a population) at high redshift. The z<2 decrease is due to the slow evolution of the gas fraction in discs, modulated by the gas accretion history and regulated by the Schmidt law. The Milky Way makes no exception to this behaviour.Comment: 8 pages, 5 figures, MNRAS accepte

    Chemical evolution of the Galactic bulge: different stellar populations and possible gradients

    Full text link
    We compute the chemical evolution of the Galactic bulge to explain the existence of two main stellar populations recently observed. After comparing model results and observational data we suggest that the old more metal poor stellar population formed very fast (on a timescale of 0.1-0.3 Gyr) by means of an intense burst of star formation and an initial mass function flatter than in the solar vicinity whereas the metal rich population formed on a longer timescale (3 Gyr). We predict differences in the mean abundances of the two populations (-0.52 dex for ) which can be interpreted as a metallicity gradients. We also predict possible gradients for Fe, O, Mg, Si, S and Ba between sub-populations inside the metal poor population itself (e.g. -0.145 dex for ). Finally, by means of a chemo-dynamical model following a dissipational collapse, we predict a gradient inside 500 pc from the Galactic center of -0.26 dex kpc^{-1} in Fe.Comment: 9 pages, 9 figures, accepted for publication in Section 5. of Astronomy and Astrophysic

    The dust content of QSO hosts at high redshift

    Full text link
    Infrared observations of high-z quasar (QSO) hosts indicate the presence of large masses of dust in the early universe. When combined with other observables, such as neutral gas masses and star formation rates, the dust content of z~6 QSO hosts may help constraining their star formation history. We have collected a database of 58 sources from the literature discovered by various surveys and observed in the FIR. We have interpreted the available data by means of chemical evolution models for forming proto-spheroids, investigating the role of the major parameters regulating star formation and dust production. For a few systems, given the derived small dynamical masses, the observed dust content can be explained only assuming a top-heavy initial mass function, an enhanced star formation efficiency and an increased rate of dust accretion. However, the possibility that, for some systems, the dynamical mass has been underestimated cannot be excluded. If this were the case, the dust mass can be accounted for by standard model assumptions. We provide predictions regarding the abundance of the descendants of QSO hosts; albeit rare, such systems should be present and detectable by future deep surveys such as Euclid already at z>4.Comment: 22 pages, 8 figures, MNRAS, accepte

    Abundance ratios in the hot ISM of elliptical galaxies

    Full text link
    To constrain the recipes put forth to solve the theoretical Fe discrepancy in the hot interstellar medium of elliptical galaxies and at the same time explain the [alpha/Fe] ratios. In order to do so we use the latest theoretical nucleosynthetic yields, we incorporate the dust, we explore differing SNIa progenitor scenarios by means of a self-consistent chemical evolution model which reproduces the properties of the stellar populations in elliptical galaxies. Models with Fe-only dust and/or a lower effective SNIa rate achieve a better agreement with the observed Fe abundance. However, a suitable modification to the SNIa yield with respect to the standard W7 model is needed to fully match the abundance ratio pattern. The 2D explosion model C-DDT by Maeda et al. (2010) is a promising candidate for reproducing the [Fe/H] and the [alpha/Fe] ratios. (A&A format)Comment: 11 pages, 4 figures, to appear on A&

    Colour gradients of high-redshift Early-Type Galaxies from hydrodynamical monolithic models

    Full text link
    We analyze the evolution of colour gradients predicted by the hydrodynamical models of early type galaxies (ETGs) in Pipino et al. (2008), which reproduce fairly well the chemical abundance pattern and the metallicity gradients of local ETGs. We convert the star formation (SF) and metal content into colours by means of stellar population synthetic model and investigate the role of different physical ingredients, as the initial gas distribution and content, and eps_SF, i.e. the normalization of SF rate. From the comparison with high redshift data, a full agreement with optical rest-frame observations at z < 1 is found, for models with low eps_SF, whereas some discrepancies emerge at 1 < z < 2, despite our models reproduce quite well the data scatter at these redshifts. To reconcile the prediction of these high eps_SF systems with the shallower colour gradients observed at lower z we suggest intervention of 1-2 dry mergers. We suggest that future studies should explore the impact of wet galaxy mergings, interactions with environment, dust content and a variation of the Initial Mass Function from the galactic centers to the peripheries.Comment: 13 pages, 7 figures, 1 table, accepted for publication on MNRA

    Galactic and Cosmic Type Ia SN rates: is it possible to impose constraints on SNIa progenitors?

    Full text link
    We compute the Type Ia supernova rates in typical elliptical galaxies by varying the progenitor models for Type Ia supernovae. To do that a formalism which takes into account the delay distribution function (DTD) of the explosion times and a given star formation history is adopted. Then the chemical evolution for ellipticals with baryonic initial masses 101010^{10}, 101110^{11} and 1012M⊙10^{12} M_{\odot} is computed, and the mass of Fe produced by each galaxy is precisely estimated. We also compute the expected Fe mass ejected by ellipticals in typical galaxy clusters (e.g. Coma and Virgo), under different assumptions about Type Ia SN progenitors. As a last step, we compute the cosmic Type Ia SN rate in an unitary volume of the Universe by adopting several cosmic star formation rates and compare it with the available and recent observational data. Unfortunately, no firm conclusions can be derived only from the cosmic SNIa rate, neither on SNIa progenitors nor on the cosmic star formation rate. Finally, by analysing all our results together, and by taking into account previous chemical evolution results, we try to constrain the best Type Ia progenitor model. We conclude that the best progenitor models for Type Ia SNe are still the single degenerate model, the double degenerate wide model, and the empirical bimodal model. All these models require the existence of prompt Type Ia supernovae, exploding in the first 100 Myr since the beginning of star formation, although their fraction should not exceed 15-20% in order to fit chemical abundances in galaxies.Comment: 17 pages, 11 figures, Submitted to MNRA

    The formation of the [alpha/Fe] radial gradients in the stars of elliptical galaxies

    Full text link
    The scope of this paper is two-fold: i) to test and improve our previous models of an outside-in formation for the majority of ellipticals in the context of the SN-driven wind scenario, by means of a careful study of gas inflows/outflows; ii) to explain the observed slopes, either positive or negative, in the radial gradient of the mean stellar [alpha/Fe], and their apparent lack of any correlation with all the other observables. In order to pursue these goals we present a new class of hydrodynamical simulations for the formation of single elliptical galaxies in which we implement detailed prescriptions for the chemical evolution of H, He, O and Fe. We find that all the models which predict chemical properties (such as the central mass-weighted abundance ratios, the colours as well as the [] gradient) within the observed ranges for a typical elliptical, also exhibit a variety of gradients in the [] ratio, in agreement with the observations (namely positive, null or negative). All these models undergo an outside-in formation, in the sense that star formation stops earlier in the outermost than in the innermost regions, owing to the onset of a galactic wind. The typical [] gradients predicted by our models have a slope of -0.3 dex per decade variation in radius, consistent with the mean values of several observational samples. We can safely conclude that the history of star formation is fundamental for the creation of abundance gradients in ellipticals but that radial flows with different velocity in conjunction with the duration and efficiency of star formation in different galactic regions are responsible for the gradients in the [] ratios.Comment: A&A accepted, replaced with final version after the peer-review proces
    • …
    corecore