3,400 research outputs found
Stellar Coronal and Wind Models: Impact on Exoplanets
Surface magnetism is believed to be the main driver of coronal heating and
stellar wind acceleration. Coronae are believed to be formed by plasma confined
in closed magnetic coronal loops of the stars, with winds mainly originating in
open magnetic field line regions. In this Chapter, we review some basic
properties of stellar coronae and winds and present some existing models. In
the last part of this Chapter, we discuss the effects of coronal winds on
exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief:
Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer
Reference Work
Dynamic clamp with StdpC software
Dynamic clamp is a powerful method that allows the introduction of artificial electrical components into target cells to simulate ionic conductances and synaptic inputs. This method is based on a fast cycle of measuring the membrane potential of a cell, calculating the current of a desired simulated component using an appropriate model and injecting this current into the cell. Here we present a dynamic clamp protocol using free, fully integrated, open-source software (StdpC, for spike timing-dependent plasticity clamp). Use of this protocol does not require specialist hardware, costly commercial software, experience in real-time operating systems or a strong programming background. The software enables the configuration and operation of a wide range of complex and fully automated dynamic clamp experiments through an intuitive and powerful interface with a minimal initial lead time of a few hours. After initial configuration, experimental results can be generated within minutes of establishing cell recording
Serosurvey of selected avian pathogens in brazilian commercial Rheas (Rhea americana) and Ostriches (Struthio camelus)
Ratite farming of has expanded worldwide. Due to the intensive farming methods used by ratite producers, preventive medicine practices should be established. In this context, the surveillance and control of some avian pathogens are essential for the success of the ratite industry; however, little is known on the health status of ratites in Brazil. Therefore, the prevalence of antibodies against Newcastle Disease virus, Chlamydophila psittaci, Mycoplasma gallisepticum, Mycoplasma synoviae, and Salmonella Pullorum were evaluated in 100 serum samples collected from commercial ostriches and in 80 serum samples from commercial rheas reared in Brazil. All sampled animals were clinically healthy. The results showed that all ostriches and rheas were serologically negative to Newcastle disease virus, Chlamydophila psittaci, Mycoplasma gallisepticum, and Mycoplasma synoviae. Positive antibody responses against Salmonella Pullorum antigen were not detected in ostrich sera, but were detected in two rhea serum samples. These results can be considered as a warning as to the presence of Salmonella spp. in ratite farms. Therefore, the implementation of good health management and surveillance programs in ratite farms may contribute to improve not only animal production, but also public health conditions.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvi-mento Científico e Tecnológico (CNPq
Studies on the interaction of the carbohydrate binding module 3 from the Clostridium thermocellum CipA scaffolding protein with cellulose and paper fibres
The adsorption of a carbohydrate binding module (CBM3) from the Clostridium thermocellum scaffolding protein (CipA) to cellulose was analysed in this work. The effect of CBM-PEG on the drainability of E. globulus and P. sylvestris pulps and on the physical properties of the respective papersheets was also studied. The CBM binding to cellulose is often described as “irreversible”, but this classification does not fully characterize this interaction. Indeed, the results obtained demonstrate that, although the adsorption on cellulose is rather stable, CBM inter-fibre mobility may be observed. The results also showed that the CBM-PEG conjugate improves the drainability of E. globulus and P. sylvestris pulps without affecting the physical properties of the papersheets.This research was supported by Fundacao para a Ciencia e a Tecnologia under grant POCTI/BIO/45356/2002
An iterative algorithm for parametrization of shortest length shift registers over finite rings
The construction of shortest feedback shift registers for a finite sequence
S_1,...,S_N is considered over the finite ring Z_{p^r}. A novel algorithm is
presented that yields a parametrization of all shortest feedback shift
registers for the sequence of numbers S_1,...,S_N, thus solving an open problem
in the literature. The algorithm iteratively processes each number, starting
with S_1, and constructs at each step a particular type of minimal Gr\"obner
basis. The construction involves a simple update rule at each step which leads
to computational efficiency. It is shown that the algorithm simultaneously
computes a similar parametrization for the reciprocal sequence S_N,...,S_1.Comment: Submitte
Recommended from our members
Mediterranean cyclones and windstorms in a changing climate
Changes in the frequency and intensity of cyclones and associated windstorms affecting the Medi-terranean region simulated under enhanced Greenhouse Gas forcing conditions are investigated. The analysis is based on 7 climate model integrations performed with two coupled global models (ECHAM5 MPIOM and INGV CMCC), comparing the end of the twentieth century and at least the first half of the twenty-first century. As one of the models has a considerably enhanced resolution of the atmosphere and the ocean, it is also investigated whether the climate change signals are influenced by the model resolution. While the higher resolved simulation is closer to reanalysis climatology, both in terms of cyclones and windstorm distributions, there is no evidence for an influence of the resolution on the sign of the climate change signal. All model simulations show a reduction in the total number of cyclones crossing the Mediterranean region under climate change conditions. Exceptions are Morocco and the Levant region, where the models predict an increase in the number of cyclones. The reduction is especially strong for intense cyclones in terms of their Laplacian of pressure. The influence of the simulated positive shift in the NAO Index on the cyclone decrease is restricted to the Western Mediterranean region, where it explains 10–50 % of the simulated trend, depending on the individual simulation. With respect to windstorms, decreases are simulated over most of the Mediterranean basin. This overall reduction is due to a decrease in the number of events associated with local cyclones, while the number of events associated with cyclones outside of the Mediterranean region slightly increases. These systems are, however, less intense in terms of their integrated severity over the Mediterranean area, as they mostly affect the fringes of the region. In spite of the general reduction in total numbers, several cyclones and windstorms of intensity unknown under current climate conditions are identified for the scenario simulations. For these events, no common trend exists in the individual simulations. Thus, they may rather be attributed to long-term (e.g. decadal) variability than to the Greenhouse Gas forcing. Nevertheless, the result indicates that high-impact weather systems will remain an important risk in the Mediterranean Basin
Electrically-driven phase transition in magnetite nanostructures
Magnetite (FeO), an archetypal transition metal oxide, has been
used for thousands of years, from lodestones in primitive compasses[1] to a
candidate material for magnetoelectronic devices.[2] In 1939 Verwey[3] found
that bulk magnetite undergoes a transition at T 120 K from a
high temperature "bad metal" conducting phase to a low-temperature insulating
phase. He suggested[4] that high temperature conduction is via the fluctuating
and correlated valences of the octahedral iron atoms, and that the transition
is the onset of charge ordering upon cooling. The Verwey transition mechanism
and the question of charge ordering remain highly controversial.[5-11] Here we
show that magnetite nanocrystals and single-crystal thin films exhibit an
electrically driven phase transition below the Verwey temperature. The
signature of this transition is the onset of sharp conductance switching in
high electric fields, hysteretic in voltage. We demonstrate that this
transition is not due to local heating, but instead is due to the breakdown of
the correlated insulating state when driven out of equilibrium by electrical
bias. We anticipate that further studies of this newly observed transition and
its low-temperature conducting phase will shed light on how charge ordering and
vibrational degrees of freedom determine the ground state of this important
compound.Comment: 17 pages, 4 figure
Astrobiological Complexity with Probabilistic Cellular Automata
Search for extraterrestrial life and intelligence constitutes one of the
major endeavors in science, but has yet been quantitatively modeled only rarely
and in a cursory and superficial fashion. We argue that probabilistic cellular
automata (PCA) represent the best quantitative framework for modeling
astrobiological history of the Milky Way and its Galactic Habitable Zone. The
relevant astrobiological parameters are to be modeled as the elements of the
input probability matrix for the PCA kernel. With the underlying simplicity of
the cellular automata constructs, this approach enables a quick analysis of
large and ambiguous input parameters' space. We perform a simple clustering
analysis of typical astrobiological histories and discuss the relevant boundary
conditions of practical importance for planning and guiding actual empirical
astrobiological and SETI projects. In addition to showing how the present
framework is adaptable to more complex situations and updated observational
databases from current and near-future space missions, we demonstrate how
numerical results could offer a cautious rationale for continuation of
practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
Evolutionary dynamics for the generalized Baliga–Maskin public good model
The problem of the consumption or provision of common and public goods is a well known and well studied problem in economic sciences. The nature of the problem is the existence of non-excludable externalities which gives rise to incentives to free-riding behaviour. There are several economical frameworks trying to deal with the problem such as coalition theory or mechanism design and implementation theory to ensure a Pareto efficient consumption or provision of such good. Baliga and Maskin considered an environmental game where several communities face a problem of pollution reduction. They show that all communities except one of them have incentives to act as a free-rider, i.e. only one community is willing to face the costs that air cleaning implies, namely the one with greatest preference for the good. In this work we introduce an adaptive evolutionary dynamics for the generalization of the Baliga–Maskin model to quasi-linear utility functions. We show that the Baliga–Maskin equilibrium is the only asymptotically stable dynamical equilibrium, all others being unstable. This result reasserts the problem of free-riding and externalities for the case of a common good in a dynamically/evolutionary setting, and reiterates the relevance of mechanism design and coalition formation in the context of dynamical models. © 201
The stellar halo of the Galaxy
Stellar halos may hold some of the best preserved fossils of the formation
history of galaxies. They are a natural product of the merging processes that
probably take place during the assembly of a galaxy, and hence may well be the
most ubiquitous component of galaxies, independently of their Hubble type. This
review focuses on our current understanding of the spatial structure, the
kinematics and chemistry of halo stars in the Milky Way. In recent years, we
have experienced a change in paradigm thanks to the discovery of large amounts
of substructure, especially in the outer halo. I discuss the implications of
the currently available observational constraints and fold them into several
possible formation scenarios. Unraveling the formation of the Galactic halo
will be possible in the near future through a combination of large wide field
photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes.
Full-resolution version available at
http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
- …
