INESC TEC Repository
Not a member yet
2130 research outputs found
Sort by
A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices
Spatial and temporal variability characterization in Precision Agriculture (PA) practices is often accomplished by proximity data gathering devices, which acquire data from a wide variety of sensors installed within the vicinity of crops. Proximity data acquisition usually depends on a hardware solution to which some sensors can be coupled, managed by a software that may (or may not) store, process and send acquired data to a back-end using some communication protocol. The sheer number of both proprietary and open hardware solutions, together with the diversity and characteristics of available sensors, is enough to deem the task of designing a data acquisition device complex. Factoring in the harsh operational context, the multiple DIY solutions presented by an active online community, available in-field power approaches and the different communication protocols, each proximity monitoring solution can be regarded as singular. Data acquisition devices should be increasingly flexible, not only by supporting a large number of heterogeneous sensors, but also by being able to resort to different communication protocols, depending on both the operational and functional contexts in which they are deployed. Furthermore, these small and unattended devices need to be sufficiently robust and cost-effective to allow greater in-field measurement granularity 365 days/year. This paper presents a low-cost, flexible and robust data acquisition device that can be deployed in different operational contexts, as it also supports three different communication technologies: IEEE 802.15.4/ZigBee, LoRa/LoRaWAN and GRPS. Software and hardware features, suitable for using heat pulse methods to measure sap flow, leaf wetness sensors and others are embedded. Its power consumption is of only 83 µA during sleep mode and the cost of the basic unit was kept below the EUR 100 limit. In-field continuous evaluation over the past three years prove that the proposed solution—SPWAS’21—is not only reliable but also represents a robust and low-cost data acquisition device capable of gathering different parameters of interest in PA practices.</jats:p
Ranking programming languages by energy efficiency
This paper compares a large set of programming languages regarding their efficiency, including from an energetic point-of-view. Indeed, we seek to establish and analyze different rankings for programming languages based on their energy efficiency. The goal of being able to rank programming languages based on their energy efficiency is both recent, and certainly deserves further studies. We have taken rigorous and strict solutions to 10 well defined programming problems, expressed in (up to) 27 programming languages, from the well known Computer Language Benchmark Game repository. This repository aims to compare programming languages based on a strict set of implementation rules and configurations for each benchmarking problem. We have also built a framework to automatically, and systematically, run, measure and compare the energy, time, and memory efficiency of such solutions. Ultimately, it is based on such comparisons that we propose a series of efficiency rankings, based on single and multiple criteria. Our results show interesting findings, such as how slower/faster languages can consume less/more energy, and how memory usage influences energy consumption. We also present a simple way to use our results to provide software engineers and practitioners support in deciding which language to use when energy efficiency is a concern. In addition, we further validate our results and rankings against implementations from a chrestomathy program repository, Rosetta Code., by reproducing our methodology and benchmarking system. This allows us to understand how the results and conclusions from our rigorously and well defined benchmarked programs compare to those based on more representative and real-world implementations. Indeed our results show that the rankings do not change apart from one programming language. © 2021 Elsevier B.V
Secure Triplet Loss: Achieving Cancelability and Non-Linkability in End-to-End Deep Biometrics
Reconfigurable Grasp Planning Pipeline with Grasp Synthesis and Selection Applied to Picking Operations in Aerospace Factories
Detailed Black-Box Monitoring of Distributed Systems
Modern containerized distributed systems, such as big data storage and processing stacks or micro-service based applications, are inherently hard to monitor and optimize, as resource usage does not directly match hardware resources due to multiple virtualization layers. For instance, inter-application traffic is an important factor in as it directly indicates how components interact, it has not been possible to accurately monitor it in an application independent way and without severe overhead, thus putting it out of reach of cloud platforms. In this paper we present an efficient black-box monitoring approach for gathering detailed structural information of collaborating processes in a distributed system that can be queried for various purposes, as it includes both information about processes, containers, and hosts, as well as resource usage and amount of data exchanged. The key to achieving high detail and low overhead without custom application instrumentation is to use a kernel-aided event driven strategy. We validate a prototype implementation by applying it to multi-platform microservice deployments, evaluate its performance with micro-benchmarks, and demonstrate its usefulness for container placement in a distributed data storage and processing stack (i.e., Cassandra and Spark)
Effectiveness of Sentinel-2 in Multi-Temporal Post-Fire Monitoring When Compared with UAV Imagery
Unmanned aerial vehicles (UAVs) have become popular in recent years and are now used in a wide variety of applications. This is the logical result of certain technological developments that occurred over the last two decades, allowing UAVs to be equipped with different types of sensors that can provide high-resolution data at relatively low prices. However, despite the success and extraordinary results achieved by the use of UAVs, traditional remote sensing platforms such as satellites continue to develop as well. Nowadays, satellites use sophisticated sensors providing data with increasingly improving spatial, temporal and radiometric resolutions. This is the case for the Sentinel-2 observation mission from the Copernicus Programme, which systematically acquires optical imagery at high spatial resolutions, with a revisiting period of five days. It therefore makes sense to think that, in some applications, satellite data may be used instead of UAV data, with all the associated benefits (extended coverage without the need to visit the area). In this study, Sentinel-2 time series data performances were evaluated in comparison with high-resolution UAV-based data, in an area affected by a fire, in 2017. Given the 10-m resolution of Sentinel-2 images, different spatial resolutions of the UAV-based data (0.25, 5 and 10 m) were used and compared to determine their similarities. The achieved results demonstrate the effectiveness of satellite data for post-fire monitoring, even at a local scale, as more cost-effective than UAV data. The Sentinel-2 results present a similar behavior to the UAV-based data for assessing burned areas.</jats:p