24,706 research outputs found

    Effects of zinc on microalgal biofilms in intertidal and subtidal habitats

    Get PDF
    Microalgal biofilms are sensitive to environmental conditions. Impacts of contaminants on assemblages of marine biofilm are often investigated in laboratories or in mesocosms. Such experiments are rarely representative of the effects of contaminants on biofilms under natural conditions. Studies in field situations, with enough power to detect impacts, are necessary to develop a better understanding of the effects of contaminants on ecological processes. Metals are a common contaminant of marine systems and can cause disturbances to assemblages. Using a new technique to experimentally deliver contaminants to microalgal assemblages, hypotheses were tested regarding the effects of zinc on microalgal biofilms growing on settlement panels in subtidal and intertidal habitats. PAM fluorometry was used to assess the amount and physiological state of biofilms on panels. Control panels deployed for 1 month in each habitat had significantly greater amounts of biofilm than those exposed to zinc. After deployment for 3 months, the results varied with location. The observed effects on the biofilm did not, however, cause significant changes in the macro-invertebrate assemblages that developed on the panels

    16α,17α-Ep­oxy-5α-hydr­oxy-6β-nitrooxy-20-oxopregnan-3β-yl acetate

    Get PDF
    The title steroid, C23H33NO8, is a pregnane derivative obtained regio-, stereo- and chemoselectively from the ring opening of the corresponding 5α,6α;16α,17α-diepoxide with bis­muth(III) nitrate. There are two symmetry-independent mol­ecules in the asymmetric unit that show no significant differences concerning bond lengths and angles. All rings are trans-fused. The conformations of the six-membered rings are close to chair forms, while the five-membered ring adopts an envelope conformation. The mol­ecules are held together by an extensive O—H⋯O hydrogen-bonding network of chains runnning along the a axis

    The distance to the LMC cluster NGC 1866 and the surrounding field

    Get PDF
    We use the Main Sequence stars in the LMC cluster NGC 1866 and of Red Clump stars in the local field to obtain two independent estimates of the LMC distance. We apply an empirical Main Sequence-fitting technique based on a large sample of subdwarfs with accurate {\sl Hipparcos} parallaxes in order to estimate the cluster distance modulus, and the multicolor Red Clump method to derive distance and reddening of the LMC field. We find that the Main Sequence-fitting and the Red Clump distance moduli are in significant disagreement; NGC 1866 distance is equal to (mM)0,NGC1866=18.33±\rm (m-M)_{0,NGC 1866}=18.33\pm0.08 (consistent with a previous estimate using the same data and theoretical Main Sequence isochrones), while the field stars provide (mM)0,field=18.53±\rm (m-M)_{0,field}=18.53\pm0.07. This difference reflects the more general dichotomy in the LMC distance estimates found in the literature. Various possible causes for this disagreement are explored, with particular attention paid to the still uncertain metallicity of the cluster and the star formation history of the field stars.Comment: 5 pages, incl. 1 figure, uses emulateapj.sty, ApJ accepte

    Frequency and damping evolution during experimental seismic response of civil engineering structures

    Get PDF
    The results of the seismic tests on several reinforced-concrete shear walls and a four-storey frame are analysed in this paper. Each specimen was submitted to the action of a horizontal accelerogram, with successive growing amplitudes, using the pseudodynamic method. An analysis of the results allows knowing the evolution of the eigen frequency and damping ratio during the earthquakes thanks to an identification method working in the time domain. The method is formulated as a spatial model in which the stiffness and damping matrices are directly identified from the experimental displacements, velocities and restoring forces. The obtained matrices are then combined with the theoretical mass in order to obtain the eigen frequencies, damping ratios and modes. Those parameters have a great relevance for the design of this type of structures

    Comment on the Adiabatic Condition

    Get PDF
    The experimental observation of effects due to Berry's phase in quantum systems is certainly one of the most impressive demonstrations of the correctness of the superposition principle in quantum mechanics. Since Berry's original paper in 1984, the spin 1/2 coupled with rotating external magnetic field has been one of the most studied models where those phases appear. We also consider a special case of this soluble model. A detailed analysis of the coupled differential equations and comparison with exact results teach us why the usual procedure (of neglecting nondiagonal terms) is mathematically sound.Comment: 9 page
    corecore