282 research outputs found
Therapeutic Targets in Amyotrophic Lateral Sclerosis: Focus on Ion Channels and Skeletal Muscle
Amyotrophic Lateral Sclerosis is a neurodegenerative disease caused by progressive loss of motor neurons, which severely compromises skeletal muscle function. Evidence shows that muscle may act as a molecular powerhouse, whose final signals generate in patients a progressive loss of voluntary muscle function and weakness leading to paralysis. This pathology is the result of a complex cascade of events that involves a crosstalk among motor neurons, glia, and muscles, and evolves through the action of converging toxic mechanisms. In fact, mitochondrial dysfunction, which leads to oxidative stress, is one of the mechanisms causing cell death. It is a common denominator for the two existing forms of the disease: sporadic and familial. Other factors include excitotoxicity, inflammation, and protein aggregation. Currently, there are limited cures. The only approved drug for therapy is riluzole, that modestly prolongs survival, with edaravone now waiting for new clinical trial aimed to clarify its efficacy. Thus, there is a need of effective treatments to reverse the damage in this devastating pathology. Many drugs have been already tested in clinical trials and are currently under investigation. This review summarizes the already tested drugs aimed at restoring muscle-nerve cross-talk and on new treatment options targeting this tissue
Statinâinduced myopathy: Translational studies from preclinical to clinical evidence
Statins are the most prescribed and effective drugs to treat cardiovascular diseases (CVD). Nevertheless, these drugs can be responsible for skeletal muscle toxicity which leads to reduced compliance. The discontinuation of therapy increases the incidence of CVD. Thus, it is essential to assess the risk. In fact, many studies have been performed at preclinical and clinical level to investigate pathophysiological mechanisms and clinical implications of statin myotoxicity. Consequently, new toxicological aspects and new biomarkers have arisen. Indeed, these drugs may affect gene transcription and ion transport and contribute to muscle function impairment. Identifying a marker of toxicity is important to prevent or to cure statin induced myopathy while assuring the right therapy for hypercholesterolemia and counteracting CVD. In this review we focused on the mechanisms of muscle damage discovered in preclinical and clinical studies and high-lighted the pathological situations in which statin therapy should be avoided. In this context, preventive or substitutive therapies should also be evaluated
Sliding drops across alternating hydrophobic and hydrophilic stripes
We perform a joint numerical and experimental study to systematically characterize the motion of 30
ÎŒl drops of pure water and of ethanol in water solutions, sliding over a periodic array of alternating hydrophobic and hydrophilic stripes with a large wettability contrast and a typical width of hundreds of microns. The fraction of the hydrophobic areas has been varied from about 20% to 80%. The effects of the heterogeneous patterning can be described by a renormalized value of the critical Bond number, i.e., the critical dimensionless force needed to depin the drop before it starts to move. Close to the critical Bond number we observe a jerky motion characterized by an evident stick-slip dynamics. As a result, dissipation is strongly localized in time, and the mean velocity of the drops can easily decrease by an order of magnitude compared to the sliding on the homogeneous surface. Lattice Boltzmann numerical simulations are crucial for disclosing to what extent the sliding dynamics can be deduced from the computed balance of capillary, viscous, and body forces by varying the Bond number, the surface composition, and the liquid viscosity. Beyond the critical Bond number, we characterize both experimentally and numerically the dissipation inside the droplet by studying the relation between the average velocity and the applied volume forces
PHARMACOLOGICAL APPROACHES TO SARS-CoV-2 INFECTION: FROM DRUG REPOSITIONING FOR COVID-19 TREATMENT TO DISEASE ARREST/PREVENTION WITH MoAbs AND NOVEL ANTIVIRALS
COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the major emergencies that have affected health care systems and society in recent decades. At the end of winter 2021-2022, the number of patients infected with SARS-CoV-2 and especially those suffering from severe COVID-19 is decreasing in Europe. This is due to the protective effect of anti-SARS-CoV-2 vaccines and the increasing number of people who had COVID-19, thus developing a certain immunity. However, vaccines to prevent the disease did not appear until more than one year after the emergence of SARS-CoV-2, so the initial medical approaches to control the disease focused on the existing drugs that were considered suitable for controlling the pathological events caused by the virus as far as was known at the time. Unfortunately, due in part to the limited initial knowledge of the molecular details of the pathology of COVID-19, many of the proposed drugs fell short of expectations and were abandoned. Over time, the challenge of understanding the mechanisms behind COVID-19 has generated a large body of knowledge about how this beta-coronavirus gains control of the host during infection, a knowledge that has been used to redefine treatment strategies by repurposing existing drugs and to explore new drugs.
Here, we draw a picture of the major strategies and groups of drugs studied and provide a critical overview of their efficacy and safety based on the available literature data. The main topics covered are repurposed drugs, anticoagulants, anti-cytokine agents, monoclonal antibodies against SARS-CoV-2, and small antiviral molecules
T-junction droplet generator realised in lithium niobate crystals by laser ablation
AbstractA femtosecond laser at 800 nm was used to create micro-fluidic circuits on lithium niobate (LiNbO3) substrates by means of laser ablation, using different scanning velocities (100-500 ÎŒm/s) and laser pulse energies (1-20 ÎŒJ). The T-junction geometry was exploited to create on y-cut LiNbO3 crystals a droplet generator, whose microfluidic performance was characterized in a wide range of droplet generation frequencies, from few Hz to about 1 kHz
Ready Both to Your and to My Hands: Mapping the Action Space of Others
To date, mutual interaction between action and perception has been investigated mainly by focusing on single individuals. However, we perceive affording objects and acts upon them in a surrounding world inhabited by other perceiving and acting bodies. Thus, the issue arises as to whether our action-oriented object perception might be modulated by the presence of another potential actor. To tackle this issue we used the spatial alignment effect paradigm and systematically examined this effect when a visually presented handled object was located close either to the perceiver or to another individual (a virtual avatar). We found that the spatial alignment effect occurred whenever the object was presented within the reaching space of a potential actor, regardless of whether it was the participant's own or the other's reaching space. These findings show that objects may afford a suitable motor act when they are ready not only to our own hand but also, and most importantly, to the other's hand. Our proposal is that this effect is likely to be due to a mapping of our own and the other's reaching space and we posit that such mapping could play a critical role in joining our own and the other's action
Mapping Robots to Therapy and Educational Objectives for Children with Autism Spectrum Disorder
The aim of this study was to increase knowledge on therapy and educational objectives professionals work on with children with autism spectrum disorder (ASD) and to identify corresponding state of the art robots. Focus group sessions (n = 9) with ASD professionals (n = 53) from nine organisations were carried out to create an objectives overview, followed by a systematic literature study to identify state of the art robots matching these objectives. Professionals identified many ASD objectives (n = 74) in 9 different domains. State of the art robots addressed 24 of these objectives in 8 domains. Robots can potentially be applied to a large scope of objectives for children with ASD. This objectives overview functions as a base to guide development of robot interventions for these children
Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission
The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5â20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures
- âŠ